Gaston A Crespo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979808/publications.pdf

Version: 2024-02-01

99 4,854 38
papers citations h-index

101 101 101 3747 all docs docs citations times ranked citing authors

102487

66

g-index

#	Article	IF	CITATIONS
1	Selective Ion Capturing via Carbon Nanotubes Charging. Analytical Chemistry, 2022, , .	6.5	1
2	Spectroelectrochemistry with Ultrathin Ion-Selective Membranes: Three Distinct Ranges for Analytical Sensing. Analytical Chemistry, 2022, 94, 9140-9148.	6.5	2
3	Ultrathin ion-selective membranes for trace detection of lead, copper and silver ions. Electrochimica Acta, 2022, 427, 140870.	5.2	3
4	Microneedle based electrochemical (Bio)Sensing: Towards decentralized and continuous health status monitoring. TrAC - Trends in Analytical Chemistry, 2021, 135, 116148.	11.4	54
5	Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors. Biomacromolecules, 2021, 22, 949-960.	5.4	10
6	Toward <i>In Vivo</i> Transdermal pH Sensing with a Validated Microneedle Membrane Electrode. ACS Sensors, 2021, 6, 1129-1137.	7.8	43
7	Electrochemical detection of trace silver. Electrochimica Acta, 2021, 374, 137929.	5.2	19
8	Anodic Stripping Voltammetry with the Hanging Mercury Drop Electrode for Trace Metal Detection in Soil Samples. Chemosensors, 2021, 9, 107.	3.6	9
9	Electrochemical biosensor for glycine detection in biological fluids. Biosensors and Bioelectronics, 2021, 182, 113154.	10.1	20
10	Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sensors, 2021, 6, 2763-2771.	7.8	98
11	Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer. Electrochimica Acta, 2021, 388, 138634.	5.2	6
12	Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology?. ACS Sensors, 2021, 6, 3496-3508.	7.8	45
13	Reagentless Acid–Base Titration for Alkalinity Detection in Seawater. Analytical Chemistry, 2021, 93, 14130-14137.	6.5	10
14	Potentiometric pH Nanosensor for Intracellular Measurements: Real-Time and Continuous Assessment of Local Gradients. Analytical Chemistry, 2021, 93, 15744-15751.	6.5	13
15	Modelling electrochemical modulation of ion release in thin-layer samples. Journal of Electroanalytical Chemistry, 2021, 903, 115851.	3.8	3
16	The sweet detection of rolling circle amplification: Glucose-based electrochemical genosensor for the detection of viral nucleic acid. Biosensors and Bioelectronics, 2020, 151, 112002.	10.1	32
17	Molybdenum and boron synergistically boosting efficient electrochemical nitrogen fixation. Nano Energy, 2020, 78, 105391.	16.0	21
18	Why Not Glycine Electrochemical Biosensors?. Sensors, 2020, 20, 4049.	3.8	9

#	Article	lF	CITATIONS
19	Spectroelectrochemical Evidence of Interconnected Charge and Ion Transfer in Ultrathin Membranes Modulated by a Redox Conducting Polymer. Analytical Chemistry, 2020, 92, 14085-14093.	6.5	7
20	Magnetizing lead-free halide double perovskites. Science Advances, 2020, 6, .	10.3	56
21	Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces. Electrochimica Acta, 2020, 341, 136022.	5.2	13
22	Epidermal Patch with Glucose Biosensor: pH and Temperature Correction toward More Accurate Sweat Analysis during Sport Practice. Analytical Chemistry, 2020, 92, 10153-10161.	6.5	116
23	Subnanomolar detection of ions using thin voltammetric membranes with reduced Exchange capacity. Sensors and Actuators B: Chemical, 2020, 321, 128453.	7.8	13
24	Thin-Layer Potentiometry for Creatinine Detection in Undiluted Human Urine Using Ion-Exchange Membranes as Barriers for Charged Interferences. Analytical Chemistry, 2020, 92, 3315-3323.	6.5	22
25	Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors – an overview of the progress in the last 20 years. Analyst, The, 2020, 145, 3188-3210.	3.5	39
26	Lowering the limit of detection of ion-selective membranes backside contacted with a film of poly(3-octylthiophene). Sensors and Actuators B: Chemical, 2019, 297, 126781.	7.8	17
27	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie - International Edition, 2019, 58, 19027-19033.	13.8	108
28	Polyaniline Films as Electrochemical-Proton Pump for Acidification of Thin Layer Samples. Analytical Chemistry, 2019, 91, 14951-14959.	6.5	18
29	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie, 2019, 131, 19203-19209.	2.0	35
30	Cytotoxicity Study of Ionophore-Based Membranes: Toward On-Body and in Vivo Ion Sensing. ACS Sensors, 2019, 4, 2524-2535.	7.8	35
31	Modern creatinine (Bio)sensing: Challenges of point-of-care platforms. Biosensors and Bioelectronics, 2019, 130, 110-124.	10.1	74
32	Wearable Potentiometric Sensors for Medical Applications. Sensors, 2019, 19, 363.	3.8	100
33	Selective Hydrogen Evolution on Manganese Oxide Coated Electrodes: New Cathodes for Sodium Chlorate Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 12170-12178.	6.7	12
34	Ferrocene self assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes. Electrochimica Acta, 2019, 315, 84-93.	5. 2	26
35	Wearable Potentiometric Ion Patch for On-Body Electrolyte Monitoring in Sweat: Toward a Validation Strategy to Ensure Physiological Relevance. Analytical Chemistry, 2019, 91, 8644-8651.	6.5	93
36	Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection. Analytical Chemistry, 2019, 91, 1578-1586.	6.5	116

3

#	Article	IF	Citations
37	Wearable potentiometric ion sensors. TrAC - Trends in Analytical Chemistry, 2019, 110, 303-320.	11.4	211
38	In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors. Analytical Chemistry, 2018, 90, 4702-4710.	6.5	59
39	All-solid-state potentiometric sensors: A new wave for in situ aquatic research. Current Opinion in Electrochemistry, 2018, 10, 98-106.	4.8	101
40	Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids. Biosensors and Bioelectronics, 2018, 99, 70-76.	10.1	29
41	Electron Hopping between Fe 3 d States in Ethynylferroceneâ€doped Poly(Methyl) Tj ETQq1 1 0.784314 rgBT	lOverlock	10 Tf 50 5
42	Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity. Talanta, 2018, 177, 191-196.	5.5	2
43	Porous Cellulose Nanofiber-Based Microcapsules for Biomolecular Sensing. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 41146-41154.	8.0	19
44	Using Potentiometric Electrodes Based on Nonselective Polymeric Membranes as Potential Universal Detectors for Ion Chromatography: Investigating an Original Research Problem from an Inquiry-Based-Learning Perspective. Journal of Chemical Education, 2018, 95, 2172-2181.	2.3	7
45	PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times. Analytical Chemistry, 2017, 89, 3508-3516.	6.5	53
46	Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes. Electrochimica Acta, 2017, 238, 357-367.	5.2	36
47	Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis. Electrochimica Acta, 2017, 245, 1023-1034.	5.2	126
48	Robust Solid-Contact Ion Selective Electrodes for High-Resolution <i>In Situ</i> Measurements in Fresh Water Systems. Environmental Science and Technology Letters, 2017, 4, 286-291.	8.7	46
49	Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment. Analytical Chemistry, 2017, 89, 595-602.	6.5	19
50	In-Line Acidification for Potentiometric Sensing of Nitrite in Natural Waters. Analytical Chemistry, 2017, 89, 571-575.	6.5	39
51	Voltammetric Thin-Layer Ionophore-Based Films: Part 1. Experimental Evidence and Numerical Simulations. Analytical Chemistry, 2017, 89, 586-594.	6.5	39
52	In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes. Environmental Science and Technology Letters, 2017, 4, 410-415.	8.7	59
53	Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes. Chemical Communications, 2016, 52, 9703-9706.	4.1	33
54	Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing. Analytical Chemistry, 2016, 88, 5649-5654.	6.5	53

#	Article	IF	CITATIONS
55	Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene). Analytical Chemistry, 2016, 88, 6939-6946.	6.5	27
56	Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes. Biosensors and Bioelectronics, 2016, 79, 114-120.	10.1	15
57	Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes. Analytical Chemistry, 2016, 88, 3444-3448.	6.5	12
58	Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection. Analytical Chemistry, 2016, 88, 3945-3952.	6.5	8
59	lonophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes. Analytical Chemistry, 2016, 88, 1654-1660.	6.5	57
60	Local Acidification of Membrane Surfaces for Potentiometric Sensing of Anions in Environmental Samples. ACS Sensors, 2016, 1, 48-54.	7.8	26
61	Thinâ€Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection. Angewandte Chemie, 2015, 127, 8228-8231.	2.0	16
62	Thin‣ayer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection. Angewandte Chemie - International Edition, 2015, 54, 8110-8113.	13.8	25
63	Potentiometric sensing array for monitoring aquatic systems. Environmental Sciences: Processes and Impacts, 2015, 17, 906-914.	3.5	30
64	Thin Layer Samples Controlled by Dynamic Electrochemistry. Chimia, 2015, 69, 203.	0.6	18
65	GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes. Sensors and Actuators B: Chemical, 2015, 207, 631-639.	7.8	10
66	Paper-Based Thin-Layer Coulometric Sensor for Halide Determination. Analytical Chemistry, 2015, 87, 1981-1990.	6.5	82
67	Thin Layer Coulometry of Nitrite with Ionâ€Selective Membranes. Electroanalysis, 2015, 27, 609-615.	2.9	10
68	Tandem Electrochemical Desalination–Potentiometric Nitrate Sensing for Seawater Analysis. Analytical Chemistry, 2015, 87, 8084-8089.	6.5	47
69	Thin Layer Ionophore-Based Membrane for Multianalyte Ion Activity Detection. Analytical Chemistry, 2015, 87, 7729-7737.	6.5	78
70	All-Solid-State Potentiometric Sensors with a Multiwalled Carbon Nanotube Inner Transducing Layer for Anion Detection in Environmental Samples. Analytical Chemistry, 2015, 87, 8640-8645.	6.5	130
71	Coulometric Calcium Pump for Thin Layer Sample Titrations. Analytical Chemistry, 2015, 87, 10125-10130.	6.5	13
72	$\langle i \rangle$ In Situ $\langle i \rangle$ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes. Analytical Chemistry, 2015, 87, 11990-11997.	6.5	53

#	Article	IF	Citations
73	Environmental Sensing of Aquatic Systems at the University of Geneva. Chimia, 2014, 68, 772-777.	0.6	1
74	Nitriteâ€Selective Electrode Based On Cobalt(II) <i>tert</i> å€Butylâ€Salophen Ionophore. Electroanalysis, 2014, 26, 473-480.	2.9	19
75	A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Analytica Chimica Acta, 2014, 821, 72-80.	5.4	114
76	Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chemistry, 2014, 6, 202-207.	13.6	153
77	Exhaustive Thin-Layer Cyclic Voltammetry for Absolute Multianalyte Halide Detection. Analytical Chemistry, 2014, 86, 11387-11395.	6.5	31
78	Chronopotentiometric Carbonate Detection with All-Solid-State Ionophore-Based Electrodes. Analytical Chemistry, 2014, 86, 6307-6314.	6.5	30
79	Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis. Biosensors and Bioelectronics, 2014, 61, 64-69.	10.1	7
80	Thin Layer Coulometry Based on Ion-Exchanger Membranes for Heparin Detection in Undiluted Human Blood. Analytical Chemistry, 2014, 86, 1357-1360.	6.5	21
81	Highâ€Selective Tramadol Sensor Based on Modified Molecularly Imprinted PolymerCarbon Paste Electrode with Multiwalled Carbon Nanotubes. Electroanalysis, 2013, 25, 1159-1168.	2.9	27
82	Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst, The, 2013, 138, 5208.	3.5	182
83	All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC. Journal of Electroanalytical Chemistry, 2013, 709, 118-125.	3.8	22
84	Dynamic electrochemistry with ionophore based ion-selective membranes. RSC Advances, 2013, 3, 25461.	3.6	49
85	Potentiometric Sensors with Ion-Exchange Donnan Exclusion Membranes. Analytical Chemistry, 2013, 85, 6208-6212.	6.5	50
86	Direct Detection of Acidity, Alkalinity, and pH with Membrane Electrodes. Analytical Chemistry, 2012, 84, 10165-10169.	6.5	34
87	The oxidation state of copper in bimetallic (Pt–Cu, Pd–Cu) catalysts during water denitration. Catalysis Science and Technology, 2012, 2, 794.	4.1	32
88	Reversible Sensing of the Anticoagulant Heparin with Protamine Permselective Membranes. Angewandte Chemie - International Edition, 2012, 51, 12575-12578.	13.8	62
89	Electrogenerated Chemiluminescence for Potentiometric Sensors. Journal of the American Chemical Society, 2012, 134, 205-207.	13.7	73
90	Paper-Based Ion-Selective Potentiometric Sensors. Analytical Chemistry, 2012, 84, 4695-4702.	6.5	189

#	Article	IF	CITATION
91	Ionophore-based ion optodes without a reference ion: electrogenerated chemiluminescence for potentiometric sensors. Analyst, The, 2012, 137, 4988.	3.5	13
92	Direct Ion Speciation Analysis with Ion-Selective Membranes Operated in a Sequential Potentiometric/Time Resolved Chronopotentiometric Sensing Mode. Analytical Chemistry, 2012, 84, 8813-8821.	6.5	37
93	Towards Ionâ€elective Membranes with Electrogenerated Chemiluminescence Detection: Visualizing Selective Ru(bpy) ₃ ₂₊ Transport Across a Plasticized Poly(vinyl chloride) Membrane. Electroanalysis, 2012, 24, 61-68.	2.9	3
94	Electrogenerated chemiluminescence triggered by electroseparation of Ru(bpy)32+ across a supported liquid membrane. Chemical Communications, 2011, 47, 11644.	4.1	9
95	Nanostructured materials in potentiometry. Analytical and Bioanalytical Chemistry, 2011, 399, 171-181.	3.7	80
96	Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Analytical and Bioanalytical Chemistry, 2009, 395, 2371-2376.	3.7	58
97	Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes. Analytical Chemistry, 2009, 81, 676-681.	6.5	211
98	lon-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate. Analyst, The, 2009, 134, 1905.	3.5	86
99	Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Analytical Chemistry, 2008, 80, 1316-1322.	6.5	365