
Michelle M Wirth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Higher post-encoding cortisol benefits the selective consolidation of emotional aspects of memory. Neurobiology of Learning and Memory, 2021, 180, 107411.	1.9	11
2	Biopsychological Aspects of Motivation. , 2018, , 407-451.		5
3	Aging and the HPA axis: Stress and resilience in older adults. Neuroscience and Biobehavioral Reviews, 2016, 68, 928-945.	6.1	173
4	Effects of Intranasal Oxytocin on Steroid Hormones in Men and Women. Neuropsychobiology, 2015, 71, 202-211.	1.9	15
5	Hormones, Stress, and Cognition: The Effects of Glucocorticoids and Oxytocin on Memory. Adaptive Human Behavior and Physiology, 2015, 1, 177-201.	1.1	51
6	Circulating cortisol levels after exogenous cortisol administration are higher in women using hormonal contraceptives: data from two preliminary studies. Stress, 2014, 17, 314-320.	1.8	18
7	Stress, rejection, and hormones: Cortisol and progesterone reactivity to laboratory speech and rejection tasks in women and men. F1000Research, 2014, 3, 208.	1.6	24
8	Stress, rejection, and hormones: Cortisol and progesterone reactivity to laboratory speech and rejection tasks in women and men. F1000Research, 2014, 3, 208.	1.6	14
9	Letter in response to Ackermann et al., "Testosterone levels in healthy men are related to amygdala reactivity and memory performance― Psychoneuroendocrinology, 2012, 37, 1587-1588.	2.7	4
10	Inter-individual differences in trait negative affect moderate cortisol's effects on memory formation: Preliminary findings from two studies. Psychoneuroendocrinology, 2012, 37, 693-701.	2.7	11
11	Beyond the HPA Axis: Progesterone-Derived Neuroactive Steroids in Human Stress and Emotion. Frontiers in Endocrinology, 2011, 2, 19.	3.5	80
12	The effect of cortisol on emotional responses depends on order of cortisol and placebo administration in a within-subject design. Psychoneuroendocrinology, 2011, 36, 945-954.	2.7	37
13	Re: "The effect of cortisol on emotional responses depends on order of cortisol and placebo administration in a within-subject design―by Wirth et al Psychoneuroendocrinology, 2011, 36, 1098-1099.	2.7	0
14	Endogenous testosterone levels are associated with amygdala and ventromedial prefrontal cortex responses to anger faces in men but not women. Biological Psychology, 2009, 81, 118-122.	2.2	91
15	Social closeness increases salivary progesterone in humans. Hormones and Behavior, 2009, 56, 108-111.	2.1	126
16	Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion. Social Cognitive and Affective Neuroscience, 2008, 3, 333-343.	3.0	64
17	Basal testosterone moderates responses to anger faces in humans. Physiology and Behavior, 2007, 90, 496-505.	2.1	129
18	Relationship between salivary cortisol and progesterone levels in humans. Biological Psychology, 2007, 74, 104-107.	2.2	63

MICHELLE M WIRTH

#	Article	IF	CITATIONS
19	Salivary cortisol changes in humans after winning or losing a dominance contest depend on implicit power motivation. Hormones and Behavior, 2006, 49, 346-352.	2.1	124
20	Effects of affiliation arousal (hope of closeness) and affiliation stress (fear of rejection) on progesterone and cortisol. Hormones and Behavior, 2006, 50, 786-795.	2.1	117
21	Effects of Implicit Power Motivation on Men's and Women's Implicit Learning and Testosterone Changes After Social Victory or Defeat Journal of Personality and Social Psychology, 2005, 88, 174-188.	2.8	207
22	Perceived Facial Expressions of Emotion as Motivational Incentives: Evidence From a Differential Implicit Learning Paradigm Emotion, 2005, 5, 41-54.	1.8	39
23	Effects of affiliation and power motivation arousal on salivary progesterone and testosterone. Hormones and Behavior, 2004, 46, 592-599.	2.1	154
24	Paraventricular hypothalamic α-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides, 2001, 22, 129-134.	2.4	106
25	Evidence of interactions between melanocortin and opioid systems in regulation of feeding. NeuroReport, 2001, 12, 1727-1730.	1.2	43
26	Agouti-related protein in the hypothalamic paraventricular nucleus: effect on feeding. Peptides, 2000, 21, 1369-1375.	2.4	72