
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Step Crystallization for Low-Oxidation Tin-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 22941-22949.	8.0	19
2	Constructing Soluble Anthraceneâ€Based Blue Emitters Free of Electrically Inert Alkyl Chains for Efficient Evaporation―and Solutionâ€Based OLEDs. ChemPlusChem, 2022, 87, e202100517.	2.8	4
3	Extremely High Power Efficiency Solutionâ€Processed Orangeâ€Red TADF OLEDs via a Synergistic Strategy of Molecular and Device Engineering. Advanced Optical Materials, 2022, 10, .	7.3	11
4	Highly stable and efficient deep-red phosphorescent organic light-emitting devices using a phenanthroline derivative as an n-type exciplex host partner. Journal of Materials Chemistry C, 2022, 10, 2073-2079.	5.5	10
5	Four Dibenzofuranâ€Terminated Highâ€Tripletâ€Energy Hole Transporters for Highâ€Efficiency and Longâ€Life Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2022, 28, .	3.3	7
6	Controlling the electronic structures of triphenylene based sky blue TADF emitters by chemical modifications for high efficiency with shorter emission lifetimes. Chemical Engineering Journal, 2022, 435, 134925.	12.7	1
7	Gel permeation chromatography process for highly oriented Cs3Cu2I5 nanocrystal film. Scientific Reports, 2022, 12, 4620.	3.3	5
8	Energy Transfer between Size-Controlled CsPbl ₃ Quantum Dots for Light-Emitting Diode Application. ACS Applied Materials & Interfaces, 2022, 14, 17691-17697.	8.0	9
9	A multifunctional hole-transporter for high-performance TADF OLEDs and clarification of factors governing the transport property by multiscale simulation. Journal of Materials Chemistry C, 2022, 10, 8694-8701.	5.5	15
10	Novel Series of Mononuclear Aluminum Complexes for Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices. Angewandte Chemie - International Edition, 2021, 60, 6036-6041.	13.8	10
11	Novel Series of Mononuclear Aluminum Complexes for Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices. Angewandte Chemie, 2021, 133, 6101-6106.	2.0	5
12	Facile synthesis of multi-resonance ultra-pure-green TADF emitters based on bridged diarylamine derivatives for efficient OLEDs with narrow emission. Journal of Materials Chemistry C, 2021, 9, 8308-8313.	5.5	59
13	Ï€â€Extended Carbazole Derivatives as Host Materials for Highly Efficient and Longâ€Life Green Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2021, 27, 4971-4976.	3.3	18
14	Bidimensional Hâ€Bond Network Promotes Structural Order and Electron Transport in BPyMPMs Molecular Semiconductor. Advanced Theory and Simulations, 2021, 4, 2000302.	2.8	4
15	Dibenzothiophene/Terpyridine Conjugated Asymmetric Electron-Transporters for High-efficiency and Long-life Green Phosphorescent OLEDs. Chemistry Letters, 2021, 50, 534-537.	1.3	1
16	Asymmetric Spirobiacridineâ€based Delayed Fluorescence Emitters for Highâ€performance Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2021, 27, 10869-10874.	3.3	11
17	Metabolic responses to polychromatic LED and OLED light at night. Scientific Reports, 2021, 11, 12402.	3.3	11
18	High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands. Chemical Engineering Journal, 2021, 414, 128866.	12.7	29

#	Article	IF	CITATIONS
19	Asymmetric Spirobiacridineâ€based Delayed Fluorescence Emitters for Highâ€performance Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2021, 27, 10780-10780.	3.3	1
20	Bis(Triphenylamine)Benzodifuran Chromophores: Synthesis, Electronic Properties and Application in Organic Light-Emitting Diodes. Frontiers in Chemistry, 2021, 9, 721272.	3.6	2
21	Improved operational lifetime of deep-red phosphorescent organic light-emitting diodes using a benzothienobenzothiophene (BTBT)-based p-type host material. Journal of Materials Chemistry C, 2021, 9, 1215-1220.	5.5	15
22	Low Molecular Weight Materials: Electron Injection Materials. , 2021, , 1-8.		0
23	Neodymium Chloride-Doped Perovskite Nanocrystals for Efficient Blue Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 53891-53898.	8.0	33
24	<i>>S</i> -Vinyl Sulfide-Derived Pendant-Type Sulfone/Phenoxazine-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence: Synthesis and Photophysical Property Characterization. ACS Applied Polymer Materials, 2020, 2, 3310-3318.	4.4	11
25	Surface Crystal Growth of Perovskite Nanocrystals via Postsynthetic Lead(II) Bromide Treatment to Increase the Colloidal Stability and Efficiency of Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 45574-45581.	8.0	21
26	Blue Perovskite Nanocrystal Lightâ€Emitting Devices via the Ligand Exchange with Adamantane Diamine. Advanced Optical Materials, 2020, 8, 2000289.	7.3	52
27	Molecular Orientations of Delayed Fluorescent Emitters in a Series of Carbazole-Based Host Materials. Frontiers in Chemistry, 2020, 8, 427.	3.6	24
28	Blue Perovskite Lightâ€Emitting Devices: Blue Perovskite Nanocrystal Lightâ€Emitting Devices via the Ligand Exchange with Adamantane Diamine (Advanced Optical Materials 13/2020). Advanced Optical Materials, 2020, 8, 2070054.	7.3	0
29	Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters. Journal of Materials Chemistry C, 2020, 8, 7200-7210.	5.5	30
30	Spirobiacridine-based Host Material for Highly Efficient Blue Phosphorescent Organic Light-emitting Devices. Chemistry Letters, 2020, 49, 228-231.	1.3	1
31	A terpyridine-modified chrysene derivative as an electron transporter to improve the lifetime in phosphorescent OLEDs. Journal of Materials Chemistry C, 2020, 8, 3200-3205.	5.5	4
32	Gel Permeation Chromatography Purification Process for Highly Efficient Perovskite Nanocrystal Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 393-397.	0.3	7
33	Low Molecular Weight Materials: Electron-Transport Materials. , 2019, , 1-10.		1
34	Doping of Tetraalkylammonium Salts in Polyethylenimine Ethoxylated for Efficient Electron Injection Layers in Solution-Processed Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2019, 11, 25351-25357.	8.0	14
35	Roomâ€∓emperature Phosphorescence from a Series of 3â€Pyridylcarbazole Derivatives. Chemistry - A European Journal, 2019, 25, 16294-16300.	3.3	12

#	Article	IF	CITATIONS
37	An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off. Advanced Functional Materials, 2019, 29, 1808022.	14.9	34
38	A sky blue thermally activated delayed fluorescence emitter to achieve efficient white light emission through in situ metal complex formation. Journal of Materials Chemistry C, 2019, 7, 3146-3149.	5.5	16
39	Pâ€172: Novel Sterically Bulky Holeâ€Transporters Realizing Enhanced Operation Lifetime in TADF OLEDs. Digest of Technical Papers SID International Symposium, 2019, 50, 1884-1885.	0.3	1
40	Pâ€174: Improved Operation Lifetime of Highly Efficient Skyâ€Blue TADF OLEDs using Hexaphenylbenzeneâ€based Holeâ€transporters. Digest of Technical Papers SID International Symposium, 2019, 50, 1889-1890.	0.3	2
41	Low-temperature cross-linking of polyethyleneimine ethoxylated using silane coupling agents to obtain stable electron injection layers in solution-processed organic light-emitting devices. Journal of Materials Chemistry C, 2019, 7, 6759-6766.	5.5	8
42	A Series of Dibenzofuranâ€Based nâ€Type Exciplex Host Partners Realizing Highâ€Efficiency and Stable Deepâ€Red Phosphorescent OLEDs. Chemistry - A European Journal, 2019, 25, 7231-7231.	3.3	2
43	Chrysene-based Electron-transporters Realizing Highly Efficient and Stable Phosphorescent OLEDs. Chemistry Letters, 2019, 48, 457-460.	1.3	5
44	Molecular Orientation: Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds (Adv. Mater. 18/2019). Advanced Materials, 2019, 31, 1970131.	21.0	0
45	Solutionâ€Processed Tandem OLEDs: An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off (Adv. Funct. Mater. 16/2019). Advanced Functional Materials. 2019. 29. 1970102.	14.9	0
46	Perovskite Solar Cells: Achieving 20% Efficiency for Lowâ€Temperatureâ€Processed Inverted Perovskite Solar Cells (Adv. Funct. Mater. 12/2019). Advanced Functional Materials, 2019, 29, 1970074.	14.9	1
47	Photochemistry: A Series of Imidazo[1,2â€f]phenanthridineâ€Based Skyâ€Blue TADF Emitters Realizing EQE of over 20% (Advanced Optical Materials 5/2019). Advanced Optical Materials, 2019, 7, 1970020.	7.3	0
48	Control of Molecular Orientation in Organic Semiconductor Films using Weak Hydrogen Bonds. Advanced Materials, 2019, 31, e1808300.	21.0	62
49	Review of Molecular Engineering for Horizontal Molecular Orientation in Organic Light-Emitting Devices. Bulletin of the Chemical Society of Japan, 2019, 92, 716-728.	3.2	82
50	High-Efficiency Sky Blue-To-Green Fluorescent Emitters Based on 3-Pyridinecarbonitrile Derivatives. Frontiers in Chemistry, 2019, 7, 254.	3.6	3
51	A Series of Dibenzofuranâ€Based nâ€Type Exciplex Host Partners Realizing Highâ€Efficiency and Stable Deepâ€Red Phosphorescent OLEDs. Chemistry - A European Journal, 2019, 25, 7308-7314.	3.3	45
52	ZnO/Polyethyleneimine Ethoxylated/Lithium Bis(trifluoromethanesulfonyl)imide for Solution-Processed Electron Injection Layers in Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 577-583.	0.3	0
53	Anion Exchange Perovskite Quantum-Dots for Highly Efficient Light-Emitting-Devices. , 2019, , .		1
54	Elucidating the impact of N-arylanilino substituents of squaraines on their photovoltaic performances. Organic Electronics, 2019, 66, 188-194.	2.6	4

#	Article	IF	CITATIONS
55	A novel π-D1-A-D2 type low bandgap squaraine dye for efficient small molecular organic solar cells. Dyes and Pigments, 2019, 163, 564-572.	3.7	9
56	Achieving 20% Efficiency for Lowâ€Temperatureâ€Processed Inverted Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807556.	14.9	68
57	A Series of Imidazo[1,2â€f]phenanthridineâ€Based Skyâ€Blue TADF Emitters Realizing EQE of over 20%. Advanced Optical Materials, 2019, 7, 1801282.	7.3	47
58	A Novel Series of Thermally and Electrically Stable Hole-transporters End-capped by [1]Benzothieno[3,2- <i>b</i>][1]benzothiophenes for Organic Light-emitting Devices. Chemistry Letters, 2019, 48, 219-222.	1.3	3
59	Visualization of Organic Light-Emitting Device Structures Fabricated by Solution-Processing Using Neutron Reflectivity Measurements. Journal of Surface Analysis (Online), 2019, 26, 2-9.	0.1	0
60	Low Molecular Weight Materials: Hole-Transport Materials. , 2019, , 1-6.		0
61	Central dicyanomethylene-substituted unsymmetrical squaraines and their application in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 5797-5806.	10.3	25
62	Post-Treatment-Free Solution-Processed Reduced Phosphomolybdic Acid Containing Molybdenum Oxide Units for Efficient Hole-Injection Layers in Organic Light-Emitting Devices. Inorganic Chemistry, 2018, 57, 1950-1957.	4.0	15
63	Flexible Organic Light-Emitting Diode Displays Driven by Inkjet-Printed High-Mobility Organic Thin-Film Transistors. IEEE Electron Device Letters, 2018, 39, 39-42.	3.9	98
64	Organic Lightâ€Emitting Devices: Airâ€5table and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers (Adv.) Tj ETQq0) 0 02ng6iT /(Oværlock 10 1
65	Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 17318-17326.	8.0	27
66	Air‣table and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers. Advanced Materials, 2018, 30, e1705915.	21.0	36
67	A Novel Sterically Bulky Hole Transporter to Remarkably Improve the Lifetime of Thermally Activated Delayed Fluorescent OLEDs at High Brightness. Chemistry - A European Journal, 2018, 24, 4590-4596.	3.3	36
68	Effects of different types of unsymmetrical squaraines on the material properties and Coulomb interactions in organic photovoltaic devices. Materials Chemistry Frontiers, 2018, 2, 2116-2123.	5.9	4
69	Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12, 681-687.	31.4	1,123
70	Operation behaviors of interconnecting-layers in solution-processed tandem organic light-emitting devices. Organic Electronics, 2018, 63, 98-103.	2.6	4
71	Interfacial Engineering of Perovskite Quantum-Dot Light-Emitting Devices Using Alkyl Ammonium Salt Layer. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 329-333.	0.3	2
72	Comparison of the Solution and Vacuum-Processed Squaraine:Fullerene Small-Molecule Bulk Heterojunction Solar Cells. Frontiers in Chemistry, 2018, 6, 412.	3.6	11

#	Article	IF	CITATIONS
73	Organic LEDs: Ultrahigh Power Efficiency Thermally Activated Delayed Fluorescent OLEDs by the Strategic Use of Electron-Transport Materials (Advanced Optical Materials 17/2018). Advanced Optical Materials, 2018, 6, 1870067.	7.3	0
74	Purification of Perovskite Quantum Dots Using Low-Dielectric-Constant Washing Solvent "Diglyme― for Highly Efficient Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 24607-24612.	8.0	102
75	A minimal non-radiative recombination loss for efficient non-fullerene all-small-molecule organic solar cells with a low energy loss of 0.54ÂeV and high open-circuit voltage of 1.15 V. Journal of Materials Chemistry A, 2018, 6, 13918-13924.	10.3	62
76	Colorful Squaraines Dyes for Efficient Solution-Processed All Small-Molecule Semitransparent Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 26465-26472.	8.0	28
77	Two-Dimensional Ca ₂ Nb ₃ O ₁₀ Perovskite Nanosheets for Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 27885-27893.	8.0	15
78	Dual mode OPV-OLED device with photovoltaic and light-emitting functionalities. Scientific Reports, 2018, 8, 11472.	3.3	18
79	White OLED (WOLED) and Charge Generation Layer (CGL). , 2018, , 1-22.		3
80	Current Status of OLED Material and Process Technologies for Display and Lighting. , 2018, , .		5
81	Lead halide perovskite quantum dots for light-emitting devices. Journal of Materials Chemistry C, 2018, 6, 11868-11877.	5.5	47
82	Ultrahigh Power Efficiency Thermally Activated Delayed Fluorescent OLEDs by the Strategic Use of Electronâ€Transport Materials. Advanced Optical Materials, 2018, 6, 1800376.	7.3	28
83	Recent progress of pyrimidine derivatives for high-performance organic light-emitting devices. Journal of Photonics for Energy, 2018, 8, 1.	1.3	70
84	Neutron Reflectivity Study for Solution-processed Organic/Organic Interfacial Structures in Organic Light-emitting Devices. Hamon, 2018, 28, 183-186.	0.0	1
85	Highly efficient, deep-red organic light-emitting devices using energy transfer from exciplexes. Journal of Materials Chemistry C, 2017, 5, 527-530.	5.5	72
86	Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission. ACS Applied Materials & Interfaces, 2017, 9, 4742-4749.	8.0	91
87	High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Applied Materials & Interfaces, 2017, 9, 18054-18060.	8.0	289
88	Addition of Lithium 8-Quinolate into Polyethylenimine Electron-Injection Layer in OLEDs: Not Only Reducing Driving Voltage but Also Improving Device Lifetime. ACS Applied Materials & Interfaces, 2017, 9, 18113-18119.	8.0	32
89	Pâ€191: Realizing Deepâ€Blue TADF Emission with CIE of (0.16, 0.15) using a Highly Twisted Acceptor Unit. Digest of Technical Papers SID International Symposium, 2017, 48, 1989-1990.	0.3	0
90	57â€3: <i>Invited Paper</i> : Solutionâ€Processed Electron Transporting Layer and Interface Characterization in Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 849-852.	0.3	2

#	Article	IF	CITATIONS
91	Pâ€172: Solutionâ€Processed Polymer and Smallâ€Molecule Tandem OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1922-1924.	0.3	0
92	Pâ€192: Efficient Deep Red Phosphorescent OLEDs with an EL Emission Peak of 670 nm. Digest of Technical Papers SID International Symposium, 2017, 48, 1991-1992.	0.3	1
93	OLEDs: Significant Enhancement of Blue OLED Performances through Molecular Engineering of Pyrimidine-Based Emitter (Advanced Optical Materials 6/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
94	Significant Enhancement of Blue OLED Performances through Molecular Engineering of Pyrimidineâ€Based Emitter. Advanced Optical Materials, 2017, 5, 1600843.	7.3	73
95	High Power Efficiency Blueâ€ŧoâ€Green Organic Lightâ€Emitting Diodes Using Isonicotinonitrileâ€Based Fluorescent Emitters. Chemistry - an Asian Journal, 2017, 12, 648-654.	3.3	25
96	Horizontally Orientated Sticklike Emitters: Enhancement of Intrinsic Out-Coupling Factor and Electroluminescence Performance. Chemistry of Materials, 2017, 29, 8630-8636.	6.7	164
97	The effect of processing solvent dependent film aggregation on the photovoltaic performance of squaraine:PC71BM bulk heterojunction solar cells. Organic Electronics, 2017, 51, 62-69.	2.6	26
98	DBP and C70 based inverted tandem solar cells using a simple interconnecting layer. RSC Advances, 2017, 7, 34664-34668.	3.6	1
99	Introduction of Twisted Backbone: A New Strategy to Achieve Efficient Blue Fluorescence Emitter with Delayed Emission. Advanced Optical Materials, 2017, 5, 1700334.	7.3	23
100	Unique Solid‣tate Emission Behavior of Aromatic Difluoroboronated βâ€Diketones as an Emitter in Organic Lightâ€Emitting Devices. Chemistry - an Asian Journal, 2017, 12, 2299-2303.	3.3	17
101	Rubrene-based interfacial engineering toward enhanced performance in inverted polymer solar cells. Organic Electronics, 2017, 50, 191-197.	2.6	8
102	Low-Band-Gap Small Molecule for Efficient Organic Solar Cells with a Low Energy Loss below 0.6 eV and a High Open-Circuit Voltage of over 0.9 V. ACS Energy Letters, 2017, 2, 2021-2025.	17.4	61
103	A Series of Lithium Pyridyl Phenolate Complexes with a Pendant Pyridyl Group for Electron-Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 40541-40548.	8.0	8
104	Influence of solution- and thermal-annealing processes on the sub-nanometer-ordered organic–organic interface structure of organic light-emitting devices. Nanoscale, 2017, 9, 25-30.	5.6	29
105	Highly Luminescent π onjugated Terpyridine Derivatives Exhibiting Thermally Activated Delayed Fluorescence. Chemistry - A European Journal, 2017, 23, 114-119.	3.3	26
106	Inhibition of solution-processed 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile crystallization by mixing additives for hole injection layers in organic light-emitting devices. Polymer Journal, 2017, 49, 149-154.	2.7	8
107	Unlocking the Potential of Pyrimidine Conjugate Emitters to Realize Highâ€Performance Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2017, 5, 1600675.	7.3	29
108	Surface-Modified Zinc Oxide Nanoparticles for Electron Injection Layers in Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 483-488.	0.3	3

#	Article	IF	CITATIONS
109	50â€4: Highâ€Performance Pyrimidineâ€Based TADF Emitters Realizing Pure Blueâ€toâ€Green Emission with EQE 25%. Digest of Technical Papers SID International Symposium, 2017, 48, 754-755.	9.3	0
110	Singlet Fission of Nonâ€polycyclic Aromatic Molecules in Organic Photovoltaics. Advanced Materials, 2016, 28, 1585-1590.	21.0	64
111	P-169: Light-Blue Thermally Activated Delayed Fluorescent Emitters Realizing a High External Quantum Efficiency of 25%. Digest of Technical Papers SID International Symposium, 2016, 47, 1754-1756.	0.3	0
112	Highâ€Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W ^{â''1} . Advanced Materials, 2016, 28, 2638-2643.	21.0	225
113	A Solution-Processable Small-Molecule Host for Phosphorescent Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 317-321.	0.3	3
114	Organic Photovoltaics: Singlet Fission of Non-polycyclic Aromatic Molecules in Organic Photovoltaics (Adv. Mater. 8/2016). Advanced Materials, 2016, 28, 1711-1711.	21.0	1
115	Two different donor subunits substituted unsymmetrical squaraines for solution-processed small molecule organic solar cells. Organic Electronics, 2016, 32, 179-186.	2.6	13
116	Organic Light-Emitting Devices with Tandem Structure. Topics in Current Chemistry, 2016, 374, 33.	5.8	17
117	Poly(pyridinium iodide ionic liquid)-based electron injection layers for solution-processed organic light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 6713-6719.	5.5	17
118	A series of pyrimidine based blue to green thermally activated delayed fluorescent emitters realizing a high EQE of 25%. , 2016, , .		0
119	Simultaneous Realization of High EQE of 30%, Low Drive Voltage, and Low Efficiency Rollâ€Off at High Brightness in Blue Phosphorescent OLEDs. Advanced Optical Materials, 2016, 4, 86-90.	7.3	109
120	Fundamental functions of peripheral and core pyridine rings in a series of bis-terpyridine derivatives for high-performance organic light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 8980-8988.	5.5	26
121	Effect of substituents in a series of carbazole-based host-materials toward high-efficiency carbene-based blue OLEDs. Journal of Materials Chemistry C, 2016, 4, 9476-9481.	5.5	19
122	Novel Blue Exciplex Comprising Acridine and Sulfone Derivatives as a Host Material for High-efficiency Blue Phosphorescent OLEDs. Chemistry Letters, 2016, 45, 283-285.	1.3	11
123	A Solution-Processed Heteropoly Acid Containing MoO ₃ Units as a Hole-Injection Material for Highly Stable Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 20946-20954.	8.0	50
124	An effective π-extended squaraine for solution-processed organic solar cells with high efficiency. Journal of Materials Chemistry A, 2016, 4, 18931-18941.	10.3	30
125	Organic Lightâ€Emitting Devices: Highâ€Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W ^{â^'1} (Adv. Mater. 13/2016). Advanced Materials, 2016, 28, 2651-2651.	21.0	1
126	Synthesis, properties, and OLED characteristics of 2,2′-bipyridine-based electron-transport materials: the synergistic effect of molecular shape anisotropy and a weak hydrogen-bonding network on molecular orientation. Journal of Materials Chemistry C, 2016, 4, 3699-3704.	5.5	43

#	Article	IF	CITATIONS
127	Simultaneous cross-linking and p-doping of a polymeric semiconductor film by immersion into a phosphomolybdic acid solution for use in organic solar cells. Chemical Communications, 2016, 52, 3825-3827.	4.1	17
128	A series of fluorinated phenylpyridine-based electron-transporters for blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 1104-1110.	5.5	31
129	Light-blue thermally activated delayed fluorescent emitters realizing a high external quantum efficiency of 25% and unprecedented low drive voltages in OLEDs. Journal of Materials Chemistry C, 2016, 4, 2274-2278.	5.5	162
130	Unsymmetrical squaraines with new linkage manner for high-performance solution-processed small-molecule organic photovoltaic cells. RSC Advances, 2016, 6, 1877-1884.	3.6	12
131	Trial Manufacturing of Thin-Film Transistor by Selective Laser Annealing with Micro Lens. The Review of Laser Engineering, 2016, 44, 193.	0.0	0
132	Whiteâ€Light Sources: Solutionâ€Processed White Phosphorescent Tandem Organic Lightâ€Emitting Devices (Adv. Mater. 32/2015). Advanced Materials, 2015, 27, 4804-4804.	21.0	1
133	Comparison of Spin and Blade Coating Methods in Solution-process for Organic Light-emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 343-347.	0.3	3
134	Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A, 2015, 3, 14517-14534.	10.3	201
135	Natural-photosynthesis-inspired photovoltaic cells using carotenoid aggregates as electron donors and chlorophyll derivatives as electron acceptors. RSC Advances, 2015, 5, 45755-45759.	3.6	31
136	Asymmetrical Squaraines Bearing Fluorine-Substituted Indoline Moieties for High-Performance Solution-Processed Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 13675-13684.	8.0	39
137	High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter. Synthetic Metals, 2015, 202, 165-168.	3.9	54
138	The Effect of Electronâ€Withdrawing Groups on Electron Transporting Silane Derivatives with Wide Energy Gap for Green Electrophosphorescent Devices. Advanced Electronic Materials, 2015, 1, 1400034.	5.1	11
139	Simultaneous Manipulation of Intramolecular and Intermolecular Hydrogen Bonds in nâ€Type Organic Semiconductor Layers: Realization of Horizontal Orientation in OLEDs. Advanced Optical Materials, 2015, 3, 769-773.	7.3	33
140	Cyano-substitution on the end-capping group: facile access toward asymmetrical squaraine showing strong dipole–dipole interactions as a high performance small molecular organic solar cells material. Journal of Materials Chemistry A, 2015, 3, 17704-17712.	10.3	40
141	Synthesis of 1,3,4-thiadiazole-based donor–acceptor alternating copolymers for polymer solar cells with high open-circuit voltage. Polymer Journal, 2015, 47, 513-521.	2.7	12
142	High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure. Applied Physics Letters, 2015, 106, 053305.	3.3	21
143	Molecular Interdiffusion between Stacked Layers by Solution and Thermal Annealing Processes in Organic Light Emitting Devices. ACS Applied Materials & Interfaces, 2015, 7, 20779-20785.	8.0	37
144	Efficient Electron Injection by Size- and Shape-Controlled Zinc Oxide Nanoparticles in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2015, 7, 25373-25377.	8.0	29

#	Article	IF	CITATIONS
145	Solutionâ€Processed White Phosphorescent Tandem Organic Lightâ€Emitting Devices. Advanced Materials, 2015, 27, 4681-4687.	21.0	135
146	Solution-Processed Organic Light-Emitting Devices. , 2015, , 195-219.		0
147	Efficient small molecule-based bulk heterojunction photovoltaic cells with reduced exciton quenching in fullerene. Organic Electronics, 2015, 26, 415-419.	2.6	11
148	Crystallization of long polycrystalline silicon with a long duration pulse from a Nd:YAG laser system. Japanese Journal of Applied Physics, 2015, 54, 075502.	1.5	8
149	Blue thermally activated delayed fluorescence materials based on bis(phenylsulfonyl)benzene derivatives. Chemical Communications, 2015, 51, 16353-16356.	4.1	112
150	Solution-processable electron injection materials for organic light-emitting devices. Journal of Materials Chemistry C, 2015, 3, 11567-11576.	5.5	68
151	A Solution-Processed Organic Thin-Film Transistor Backplane for Flexible Multiphoton Emission Organic Light-Emitting Diode Displays. IEEE Electron Device Letters, 2015, 36, 841-843.	3.9	56
152	Fabrication of Organic Lightâ€Emitting Devices Comprising Stacked Lightâ€Emitting Units by Solutionâ€Based Processes. Advanced Materials, 2015, 27, 1327-1332.	21.0	90
153	Instant Lowâ€Temperature Crossâ€Linking of Poly(<i>N</i> â€vinylcarbazole) for Solutionâ€Processed Multilayer Blue Phosphorescent Organic Lightâ€Emitting Devices. Advanced Materials, 2014, 26, 7543-7546.	21.0	85
154	Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nature Communications, 2014, 5, 5756.	12.8	278
155	Fullerene C70 as a p-type donor in organic photovoltaic cells. Applied Physics Letters, 2014, 105, 093301.	3.3	16
156	Pyridineâ€Containing Electronâ€Transport Materials for Highly Efficient Blue Phosphorescent OLEDs with Ultralow Operating Voltage and Reduced Efficiency Rollâ€Off. Advanced Functional Materials, 2014, 24, 3268-3275.	14.9	127
157	Organic Light-Emitting Devices: Instant Low-Temperature Cross-Linking of Poly(N-vinylcarbazole) for Solution-Processed Multilayer Blue Phosphorescent Organic Light-Emitting Devices (Adv. Mater.) Tj ETQq1 1 0.784	4 21. 9rgBT	Dverlock 1
158	Double-layered thin collector in n-type metal-base organic transistors. Japanese Journal of Applied Physics, 2014, 53, 01AC03.	1.5	0
159	A Donor–Acceptor-type Host Material for Solution-processed Phosphorescent Organic Light-emitting Devices Showing High Efficiency. Chemistry Letters, 2014, 43, 1935-1936.	1.3	9
160	A squaraine dye as molecular sensitizer for increasing light harvesting in polymer solar cells. Synthetic Metals, 2014, 192, 10-14.	3.9	22
161	Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry. Advanced Materials Interfaces, 2014, 1, 1400097.	3.7	18
162	A morphology control layer of a pyrene dimer enhances the efficiency in small molecule organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 501-509.	5.5	10

#	Article	IF	CITATIONS
163	Bisanthraceneâ€Based Donor–Acceptorâ€type Lightâ€Emitting Dopants: Highly Efficient Deepâ€Blue Emission Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2014, 24, 2064-2071.	in 14.9	278
164	Soluble squaraine derivatives for 4.9% efficient organic photovoltaic cells. RSC Advances, 2014, 4, 42804-42807.	3.6	31
165	Esterification of Indoline-Based Small-Molecule Donors for Efficient Co-evaporated Organic Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 14785-14794.	3.1	15
166	A Series of Squaraine Dyes: Effects of Side Chain and the Number of Hydroxyl Groups on Material Properties and Photovoltaic Performance. Chemistry of Materials, 2014, 26, 1356-1364.	6.7	119
167	Lithium Phenolate Complexes with a Pyridineâ€Containing Polymer for Solutionâ€Processable Electron Injection Layers in PLEDs. Advanced Functional Materials, 2014, 24, 6038-6045.	14.9	15
168	Lowâ€Ðrivingâ€Voltage Blue Phosphorescent Organic Lightâ€Emitting Devices with External Quantum Efficiency of 30%. Advanced Materials, 2014, 26, 5062-5066.	21.0	308
169	Highâ€Performance Blue Phosphorescent OLEDs Using Energy Transfer from Exciplex. Advanced Materials, 2014, 26, 1612-1616.	21.0	224
170	Fabrication of Light Scattering Structure by Self-organization of a Polymer: Application to Light Out-coupling Enhancement in OLEDs. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 363-367.	0.3	1
171	Organic Light Emitting Devices: Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry (Adv. Mater. Interfaces 9/2014). Advanced Materials Interfaces, 2014, 1, .	3.7	О
172	Dicyano-functionalized chlorophyll derivatives with ambipolar characteristic for organic photovoltaics. Organic Electronics, 2013, 14, 1972-1979.	2.6	21
173	Recent Progress in Phosphorescent Organic Lightâ€Emitting Devices. European Journal of Organic Chemistry, 2013, 2013, 7653-7663.	2.4	242
174	J-aggregation of a squaraine dye and its application in organic photovoltaic cells. Journal of Materials Chemistry C, 2013, 1, 6547.	5.5	91
175	High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination. Applied Physics Letters, 2013, 102, 153308.	3.3	34
176	Fullerene derivatives as electron donor for organic photovoltaic cells. Applied Physics Letters, 2013, 103, 203301.	3.3	27
177	Natural Photosynthetic Carotenoids for Solution-Processed Organic Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2013, 117, 804-811.	3.1	40
178	Polymer Material Dependence in the Polymer/Small Molecule Metal-Base Organic Transistors. Molecular Crystals and Liquid Crystals, 2013, 580, 117-124.	0.9	2
179	Highly Efficient Electronâ€Transporting/Injecting and Thermally Stable Naphthyridines for Organic Electrophosphorescent Devices. Advanced Functional Materials, 2013, 23, 1323-1330.	14.9	41
180	Development of high performance OLEDs for general lighting. Journal of Materials Chemistry C, 2013, 1, 1699.	5.5	614

#	Article	IF	CITATIONS
181	Highly efficient organic p–i–n photovoltaic cells based on tetraphenyldibenzoperiflanthene and fullerene C ₇₀ . Energy and Environmental Science, 2013, 6, 249-255.	30.8	57
182	Thermally cross-linkable host materials for enabling solution-processed multilayer stacks in organic light-emitting devices. Organic Electronics, 2013, 14, 1614-1620.	2.6	54
183	Synthesis and electroluminescence properties of highly efficient blue fluorescence emitters using dual core chromophores. Journal of Materials Chemistry C, 2013, 1, 432-440.	5.5	97
184	High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium(iii) complex with fluorinated bipyridyl ligands. Journal of Materials Chemistry C, 2013, 1, 1070.	5.5	129
185	Extremely Low Operating Voltage Green Phosphorescent Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2013, 23, 5550-5555.	14.9	157
186	A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices. Light: Science and Applications, 2013, 2, e74-e74.	16.6	259
187	Indoline-based donor molecule for efficient co-evaporated organic photovoltaics. Organic Electronics, 2013, 14, 2210-2215.	2.6	2
188	Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs. Journal of Materials Chemistry C, 2013, 1, 3871.	5.5	55
189	Chloroboron (III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells. Nanotechnology, 2013, 24, 484007.	2.6	23
190	Influence of Fullerene Multiadducts on the Morphology and Charge Photogeneration of Their Photovoltaic Blends with Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2013, 117, 25898-25907.	3.1	13
191	P.144:Late-News Poster: Synthesis and Electroluminescence Properties of Highly Efficient Blue Fluorescence Emitters Using Dual Core Chromophores. Digest of Technical Papers SID International Symposium, 2013, 44, 1480-1482.	0.3	0
192	Solution-Processed Organic Photovoltaics Based on Indoline Dye Molecules Developed in Dye-Sensitized Solar Cells. Molecules, 2013, 18, 3107-3117.	3.8	14
193	Multilayered Organic Light-Emitting Devices by Solution-Process. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 403-410.	0.3	14
194	Pulsed Laser System with Variable Pulse Duration for Laser Annealing. The Review of Laser Engineering, 2013, 41, 1031.	0.0	5
195	Organic Semiconductors: Wide-Range Refractive Index Control of Organic Semiconductor Films Toward Advanced Optical Design of Organic Optoelectronic Devices (Adv. Mater. 47/2012). Advanced Materials, 2012, 24, 6386-6386.	21.0	0
196	Syntheses of Solution-Processable Arylamine Derivatives and Their Application to Organic Light Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 335-339.	0.3	1
197	Solution-processable carbazole-based host materials for phosphorescent organic light-emitting devices. Organic Electronics, 2012, 13, 2235-2242.	2.6	37
198	Solution-processed organic light-emitting devices with two polymer light-emitting units connected in series by a charge-generation layer. Journal of Materials Chemistry, 2012, 22, 22769.	6.7	41

#	Article	IF	CITATIONS
199	Three-carbazole-armed host materials with various cores for RGB phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 3447.	6.7	88
200	Hybrid Heterocycle-Containing Electron-Transport Materials Synthesized by Regioselective Suzuki Cross-Coupling Reactions for Highly Efficient Phosphorescent OLEDs with Unprecedented Low Operating Voltage. Chemistry of Materials, 2012, 24, 3817-3827.	6.7	45
201	High Current Amplification in p-Type Metal-Base Organic Transistors Using Pentacene Films. Applied Physics Express, 2012, 5, 094202.	2.4	12
202	A host material with a small singlet–triplet exchange energy for phosphorescent organic light-emitting diodes: Guest, host, and exciplex emission. Organic Electronics, 2012, 13, 1937-1947.	2.6	57
203	Solution-processed organic photovoltaic cells based on a squaraine dye. Physical Chemistry Chemical Physics, 2012, 14, 14661.	2.8	69
204	Solution-Processed Inorganic–Organic Hybrid Electron Injection Layer for Polymer Light-Emitting Devices. ACS Applied Materials & Interfaces, 2012, 4, 6104-6108.	8.0	61
205	Wideâ€Range Refractive Index Control of Organic Semiconductor Films Toward Advanced Optical Design of Organic Optoelectronic Devices. Advanced Materials, 2012, 24, 6368-6373.	21.0	35
206	57.2:Invited Paper: White OLEDs for General Lighting. Digest of Technical Papers SID International Symposium, 2012, 43, 776-777.	0.3	0
207	Optical and electrical properties of a squaraine dye in photovoltaic cells. Applied Physics Letters, 2012, 101, 083904.	3.3	51
208	Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%. Organic Electronics, 2012, 13, 2615-2619.	2.6	66
209	Extremely high-efficiency multiphoton emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%. , 2012, , .		0
210	Development of Solar Cells Based on Synthetic Near-Infrared Absorbing Purpurins 2: Use of Fullerene and Its Derivative As Electron Acceptors for Favorable Charge Separation. Journal of Physical Chemistry C, 2012, 116, 21244-21254.	3.1	18
211	A <i>m</i> -Terphenyl-Modifed Sulfone Derivative as a Host Material for High-Efficiency Blue and Green Phosphorescent OLEDs. Chemistry of Materials, 2012, 24, 1404-1406.	6.7	125
212	A single-molecule excimer-emitting compound for highly efficient fluorescent organic light-emitting devices. Chemical Communications, 2012, 48, 8434.	4.1	53
213	Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer. Advanced Functional Materials, 2012, 22, 3261-3266.	14.9	73
214	Coâ€Evaporated Bulk Heterojunction Solar Cells with >6.0% Efficiency. Advanced Materials, 2012, 24, 2768-2773.	21.0	149
215	3,3′â€Bicarbazoleâ€Based Host Materials for Highâ€Efficiency Blue Phosphorescent OLEDs with Extremely Low Driving Voltage. Advanced Materials, 2012, 24, 3212-3217.	21.0	194
216	High-efficiency simple planar heterojunction organic thin-film photovoltaics with horizontally oriented amorphous donors. Solar Energy Materials and Solar Cells, 2012, 98, 472-475.	6.2	57

#	Article	IF	CITATIONS
217	Optimizing the Charge Balance of Fluorescent Organic Lightâ€Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit. Advanced Materials, 2012, 24, 1765-1770.	21.0	141
218	RGB Phosphorescent Organic Light-Emitting Diodes by Using Host Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations. Chemistry of Materials, 2011, 23, 274-284.	6.7	251
219	Multifunctional Materials in High-Performance OLEDs: Challenges for Solid-State Lighting. Chemistry of Materials, 2011, 23, 621-630.	6.7	486
220	Surfaceâ€lightâ€emitting transistors based on verticalâ€type metalâ€base organic transistors. Journal of the Society for Information Display, 2011, 19, 602-607.	2.1	4
221	9,10-Bis(bipyridyl, pyridylphenyl, phenylpyridyl, and biphenyl)anthracenes Combining High Electron Transport and Injection, Efficiency and Stability in Fluorescent Organic Light-emitting Devices. Chemistry Letters, 2011, 40, 1092-1094.	1.3	8
222	An α-Carboline-containing Host Material for High-efficiency Blue and Green Phosphorescent OLEDs. Chemistry Letters, 2011, 40, 306-308.	1.3	44
223	Luminescence Characteristics for Blends of Iridium Complexes with Liquid Crystalline Ligands. Kobunshi Ronbunshu, 2011, 68, 115-121.	0.2	0
224	fac-Tris(2-phenylpyridine)iridium (III)s, covalently surrounded by six bulky host dendrons, for a highly efficient solution-processed organic light emitting device. Organic Electronics, 2011, 12, 2103-2110.	2.6	24
225	Hole mobility measurement of 4,4′-Bis[N-(1-naphthyl)-N-phenylamino]-biphenyl by dark injection method. Chemical Physics Letters, 2011, 502, 118-120.	2.6	14
226	Influence of Substituted Pyridine Rings on Physical Properties and Electron Mobilities of 2-Methylpyrimidine Skeleton-Based Electron Transporters. Advanced Functional Materials, 2011, 21, 336-342.	14.9	139
227	Molecular Stacking Induced by Intermolecular C–H···N Hydrogen Bonds Leading to High Carrier Mobility in Vacuumâ€Deposited Organic Films. Advanced Functional Materials, 2011, 21, 1375-1382.	14.9	144
228	Recent Progresses on Materials for Electrophosphorescent Organic Lightâ€Emitting Devices. Advanced Materials, 2011, 23, 926-952.	21.0	1,268
229	High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2011, 12, 843-850.	2.6	86
230	Ultra-high efficiency by multiple emission from stacked organic light-emitting devices. Organic Electronics, 2011, 12, 710-715.	2.6	143
231	Efficient Low-Driving-Voltage Blue Phosphorescent Homojunction Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 040204.	1.5	16
232	Dual efficiency enhancement by delayed fluorescence and dipole orientation in high-efficiency fluorescent organic light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	89
233	Efficient Low-Driving-Voltage Blue Phosphorescent Homojunction Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 040204.	1.5	5
234	Alkoxyphenyl Group-Containing Starburst Host Materials for Efficient Blue and Green Organic Light-Emitting Devices. IEICE Transactions on Electronics, 2011, E94-C, 1848-1850.	0.6	0

#	Article	IF	CITATIONS
235	Highly Efficient Green Phosphorescent OLED Based on Pyridine-containing Starburst Electron-transporting Materials. Chemistry Letters, 2010, 39, 140-141.	1.3	24
236	Tuning Energy Levels of Electronâ€Transport Materials by Nitrogen Orientation for Electrophosphorescent Devices with an â€~Ideal' Operating Voltage. Advanced Materials, 2010, 22, 3311-3316.	21.0	166
237	Highâ€Efficiency Blue and White Organic Lightâ€Emitting Devices Incorporating a Blue Iridium Carbene Complex. Advanced Materials, 2010, 22, 5003-5007.	21.0	506
238	Bifluorene compounds containing carbazole and/or diphenylamine groups and their bipolar charge transport properties in organic light emitting devices. Organic Electronics, 2010, 11, 717-723.	2.6	12
239	Arylamino-9,10-diphenylanthracenes for organic light emitting devices. Organic Electronics, 2010, 11, 479-485.	2.6	25
240	Electron Injection and Transport Properties of Phenazine Compounds with Fused Rings. Japanese Journal of Applied Physics, 2010, 49, 01AB11.	1.5	6
241	LiF/Al Base Electrodes in Vertical Metal-Base Organic Transistors for Heat-Treatment-Free Process. Japanese Journal of Applied Physics, 2010, 49, 030202.	1.5	4
242	Mobility Improvement in N-Type Organic FET with Hetero-Layered Structure. Molecular Crystals and Liquid Crystals, 2009, 504, 124-132.	0.9	1
243	Structure–Property Relationship of Pyridineâ€Containing Triphenyl Benzene Electronâ€Transport Materials for Highly Efficient Blue Phosphorescent OLEDs. Advanced Functional Materials, 2009, 19, 1260-1267.	14.9	190
244	Nearly 100% Internal Quantum Efficiency in an Organic Blue‣ight Electrophosphorescent Device Using a Weak Electron Transporting Material with a Wide Energy Gap. Advanced Materials, 2009, 21, 1271-1274.	21.0	347
245	Dipyrenylpyridines for electron-transporting materials in organic light emitting devices and their structural effect on electron injection from LiF/Al cathode. Organic Electronics, 2009, 10, 877-882.	2.6	12
246	Lithium phenolate complexes for an electron injection layer in organic light-emitting diodes. Organic Electronics, 2009, 10, 228-232.	2.6	44
247	Synthesis, photoluminescence and electroluminescence properties of iridium complexes with bulky carbazole dendrons. Organic Electronics, 2009, 10, 465-472.	2.6	25
248	Current Enhancement in the Vertical-Type Metal-Base Organic Transistors. Molecular Crystals and Liquid Crystals, 2009, 504, 133-139.	0.9	2
249	m-Terphenyl-modified carbazole host material for highly efficient blue and green PHOLEDS. Chemical Communications, 2009, , 6655.	4.1	83
250	Highly Efficient Organic Light-emitting Devices based on a New Yellow Fluorescent Dopant. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 521-523.	0.3	0
251	Phenanthroline Derivatives for Electron-transport Layer in Organic Light-emitting Devices. Chemistry Letters, 2009, 38, 712-713.	1.3	13
252	Pyridineâ€Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs. Advanced Materials, 2008, 20, 2125-2130.	21.0	590

#	Article	IF	CITATIONS
253	Highly Efficient Organic Blueâ€and Whiteâ€Lightâ€Emitting Devices Having a Carrier―and Excitonâ€Confining Structure for Reduced Efficiency Rollâ€Off. Advanced Materials, 2008, 20, 4189-4194.	21.0	300
254	Electronegative Oligothiophenes Based on Difluorodioxocyclopentene-Annelated Thiophenes: Synthesis, Properties, and n-Type FET Performances. Organic Letters, 2008, 10, 833-836.	4.6	81
255	Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device. Chemistry of Materials, 2008, 20, 5951-5953.	6.7	242
256	Solution-processable organic fluorescent dyes for multicolor emission in organic light emitting diodes. Journal of Materials Chemistry, 2008, 18, 4183.	6.7	67
257	2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices. Chemical Communications, 2008, , 5821.	4.1	130
258	Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs. Chemistry of Materials, 2008, 20, 1691-1693.	6.7	491
259	61.1: Invited Paper: High Performance OLEDs for Displays and General Lighting. Digest of Technical Papers SID International Symposium, 2008, 39, 931.	0.3	22
260	Novel Four-Pyridylbenzene-Armed Biphenyls as Electron-Transport Materials for Phosphorescent OLEDs. Organic Letters, 2008, 10, 941-944.	4.6	125
261	Organic Light-Emitting Devices for Solid-State Lighting. MRS Bulletin, 2008, 33, 663-669.	3.5	381
262	Temperature Measurements of Organic Light-Emitting Diodes by Stokes and Anti-Stokes Raman Scattering. Japanese Journal of Applied Physics, 2008, 47, 2171-2173.	1.5	13
263	High-efficiency stacked white organic light-emitting diodes. Applied Physics Letters, 2008, 92, .	3.3	169
264	Red Phosphorescent Iridium Complexes having a Bulky Ancillary Ligand for Solution-processed Organic Light Emitting Diodes. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 323-325.	0.3	6
265	High Efficient OLEDs and Their Application to Lighting. Journal of Light and Visual Environment, 2008, 32, 75-78.	0.2	14
266	Electroluminescent Properties of a Solution Processable Carbazole-Substituted Iridium(III) Complex. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 73-75.	0.3	8
267	Novel Electron-transport Material Containing Boron Atom with a High Triplet Excited Energy Level. Chemistry Letters, 2007, 36, 262-263.	1.3	162
268	Hexaphenylbenzene Derivatives for Blue Organic Light-emitting Devices. Chemistry Letters, 2007, 36, 590-591.	1.3	25
269	Syntheses and Properties of Novel Quarterphenylene-based Materials for Blue Organic Light-emitting Devices. Chemistry Letters, 2007, 36, 316-317.	1.3	52
270	Highly Efficient Electron-transporting Phenanthroline Derivatives for Electroluminescent Devices. Chemistry Letters, 2007, 36, 802-803.	1.3	3

#	Article	IF	CITATIONS
271	Recent Progress in Organic Light-Emitting Devices. , 2007, , .		2
272	High-Efficiency Green Phosphorescent Organic Light-Emitting Devices with Chemically Doped Layers. Japanese Journal of Applied Physics, 2007, 46, 1186-1188.	1.5	117
273	High Luminous Efficiency Blue Organic Light-Emitting Devices Using High Triplet Excited Energy Materials. Japanese Journal of Applied Physics, 2007, 46, L117-L119.	1.5	122
274	An unpaired electron-based hole-transporting molecule: Triarylamine-combined nitroxide radicals. Chemical Communications, 2007, , 2986.	4.1	32
275	Ultra High Efficiency Green Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2007, 46, L10-L12.	1.5	351
276	Triarylamine-combined nitronyl nitroxide and its hole-transporting property. Polyhedron, 2007, 26, 1776-1780.	2.2	16
277	Hole-Transporting Property of Star-shaped Nitroxide Radical Molecule. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 143-144.	0.3	0
278	Syntheses and Application of Novel Blue Phosphorescent Iridium Complexes to OLEDs. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 663-667.	0.3	7
279	Exciton quenching in highly efficient europium-complex based organic light-emitting diodes. Organic Electronics, 2006, 7, 29-37.	2.6	65
280	Synthesis and electroluminescent property of poly(p-phenylenevinylene)s bearing triarylamine pendants. Polymer, 2005, 46, 3767-3775.	3.8	104
281	Synthesis of polymer-iridium complex and its electroluminescent characteristics. Polymers for Advanced Technologies, 2005, 16, 480-483.	3.2	19
282	Organic light-emitting devices having chemically-doped arylamine oligomer as a hole injection layer. Polymers for Advanced Technologies, 2005, 16, 559-562.	3.2	9
283	Synthesis and electrochemical and electroluminescent properties ofN-phenylcarbazole-substituted poly(p-phenylenevinylene). Journal of Polymer Science Part A, 2005, 43, 5765-5773.	2.3	31
284	High Efficiency Blue Organic Electroluminescent Devices Having a Metal-Doped Electron Injection Layer. Synthetic Metals, 2005, 153, 241-244.	3.9	24
285	Synthesis and electroluminescence properties of fluorene containing arylamine oligomer. Polymers for Advanced Technologies, 2004, 15, 266-269.	3.2	20
286	Organic electroluminescent devices using europium complex-doped poly(N-vinylcarbazole). Polymers for Advanced Technologies, 2004, 15, 302-305.	3.2	16
287	Triphenylamine- and oxadiazole-substituted poly(1,4-phenylenevinylene)s: synthesis, photo-, and electroluminescent properties. Synthetic Metals, 2004, 143, 207-214.	3.9	31
288	Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2681-2690.	2.1	131

#	Article	IF	CITATIONS
289	27.1: Invited Paper: High Efficiency Organic EL Devices having Charge Generation Layers. Digest of Technical Papers SID International Symposium, 2003, 34, 964.	0.3	74
290	27.5L: Late-News Paper: Multiphoton Organic EL device having Charge Generation Layer. Digest of Technical Papers SID International Symposium, 2003, 34, 979.	0.3	140
291	Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification. Applied Physics Letters, 2003, 83, 4695-4697.	3.3	113
292	Charge-Transporting Property of Polymer Films Doped with Organic Stable Radicals. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 297-298.	0.3	2
293	High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex. Applied Physics Letters, 2002, 80, 2308-2310.	3.3	220
294	Organic Electroluminescent Devices Having Self-Doped Cathode Interface Layer. Japanese Journal of Applied Physics, 2002, 41, L334-L336.	1.5	17
295	Organic Electroluminescent Devices Having Metal Complexes as Cathode Interface Layer. Japanese Journal of Applied Physics, 2002, 41, L800-L803.	1.5	55
296	Electroluminescence of Poly(phenylenevinylene)s Containing Triphenylamine Moieties in the Main Chain. Japanese Journal of Applied Physics, 2002, 41, 362-365.	1.5	3
297	Electroluminescent Properties of a Triphenylamine-Containing Poly(phenylenevinylene) Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2002, 15, 259-260.	0.3	1
298	Organic EL Devices Having Lewis-Acid-Doped Polymer As a Hole-Injecting Layer Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2002, 15, 261-264.	0.3	7
299	Syntheses of Vinyl Polymers Containing Phenylanthracene Pendants and Their Application ro Organic EL Device. Chemistry Letters, 2002, 31, 386-387.	1.3	7
300	Preparation, Thermotropic Liquid-Crystalline and Fluorescent Properties of Semi-Rigid Homo- and Copoly(ester-imide)s Composed of 3,3â€;4,4―p-Terphenyltetracarboxdiimide and 3,3',4,4'-Biphenyltetracarboxdiimide. Polymer Journal, 2002, 34, 601-607.	2.7	12
301	Organic Electroluminescent Devices with a Vacuum-Deposited Lewis-Acid-Doped Hole-Injecting Layer. Japanese Journal of Applied Physics, 2002, 41, L358-L360.	1.5	93
302	High-efficiency organic electroluminescent devices using iridium complex emitter and arylamine-containing polymer buffer layer. Polymers for Advanced Technologies, 2002, 13, 601-604.	3.2	36
303	Organo Lanthanide Metal Complexes for Electroluminescent Materials. Chemical Reviews, 2002, 102, 2357-2368.	47.7	1,558
304	A Novel Triphenylamine-Substituted Poly(p-phenylenevinylene):Â Improved Photo- and Electroluminescent Properties. Chemistry of Materials, 2001, 13, 3817-3819.	6.7	84
305	Photo- and electro-luminescent properties of thermotropic liquid crystalline quaterphenyl analogues comprising a 2,2'-bi-1,3,4-thiadiazole unit. Liquid Crystals, 2001, 28, 1211-1214.	2.2	33
306	Fabrication of Multi Color Polymer EL Devices using the Photo-bleaching Method Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2001, 14, 317-322.	0.3	14

#	Article	IF	CITATIONS
307	Organic electroluminescent devices with polymer buffer layer. , 2001, 4105, 134.		23
308	Molecular Organic Light-Emitting Diodes Based on a Guest-Host Active Layer: Approaches for Enhancing Device Performance. Molecular Crystals and Liquid Crystals, 2000, 353, 567-580.	0.3	3
309	A Matrix-Isolation Spectroscopic and Theoretical Investigation of Tris(8-hydroxyquinolinato)aluminum(III) and Tris(4-methyl-8-hydroxyquinolinato)aluminum(III)â€. Journal of Physical Chemistry A, 2000, 104, 3670-3680.	2.5	108
310	Time-of-Flight Measurement of Hole Mobility in Aluminum (III) Complexes. Japanese Journal of Applied Physics, 1999, 38, L1252-L1254.	1.5	31
311	Synthesis and properties of organosilicon polymers containing 9,10-diethynylanthracene units with highly hole-transporting properties. Journal of Organometallic Chemistry, 1999, 592, 52-60.	1.8	43
312	Photoluminescence quantum yield of pure and molecularly doped organic solid films. Journal of Applied Physics, 1999, 86, 2642-2650.	2.5	192
313	Multicolor Organic Light-Emitting Diodes Processed by Hybrid Inkjet Printing. Advanced Materials, 1999, 11, 734-737.	21.0	237
314	Organic electroluminescent devices using organosilicon polymers containing phenylene or diethynylanthracene units. Applied Organometallic Chemistry, 1999, 13, 859-865.	3.5	17
315	Organic displays. Physics World, 1999, 12, 27-30.	0.0	43
316	Electroluminescent properties of functional p-electron molecular systems. Pure and Applied Chemistry, 1999, 71, 2085-2094.	1.9	15
317	Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Applied Physics Letters, 1998, 73, 2866-2868.	3.3	560
318	Stannous Chloride as an Effective Initiator for Copolymerization of Styrene with Maleic Anhydride. Journal of Macromolecular Science - Pure and Applied Chemistry, 1998, 35, 109-119.	2.2	2
319	Fabrication of highly efficient organic electroluminescent devices. Applied Physics Letters, 1998, 73, 2721-2723.	3.3	359
320	Multilayer Organic Electroluminescent Device with Dithienosilole Derivative. Chemistry Letters, 1998, 27, 1233-1234.	1.3	20
321	Hydrogen-induced light emission from an organic electroluminescent device. Applied Physics Letters, 1997, 71, 2877-2879.	3.3	2
322	Efficient Electroluminescence from Tris(4-methyl-8-quinolinolato)aluminum(III). Chemistry Letters, 1997, 26, 963-964.	1.3	62
323	A Novel Electroluminescent Metal Complex: Tris(4-phenanthridinolato)aluminum(III). Chemistry Letters, 1997, 26, 593-594.	1.3	20
324	Orange Color Electroluminescence from Bis(2-styryl-8-quinolinolato)zinc(II). Chemistry Letters, 1997, 26, 633-634.	1.3	10

#	Article	IF	CITATIONS
325	Multilayer electroluminescent device using organosilicon polymer as hole transport layer. Synthetic Metals, 1997, 91, 333-334.	3.9	36
326	Editorial—Electroluminescent Polymers. Polymers for Advanced Technologies, 1997, 8, 379-379.	3.2	3
327	Electroluminescent Poly(arylene ether) Containing Both Hole-Transporting and Electron-Transporting Units. Chemistry Letters, 1996, 25, 161-162.	1.3	36
328	Blue Electroluminescent 1,2,4-Triazole Derivative. Chemistry Letters, 1996, 25, 47-48.	1.3	25
329	Organic electroluminescent device with aromatic amine-containing polymer as a hole transport layer (II): Poly(arylene ether sulfone)-containing tetraphenylbenzidine. Polymers for Advanced Technologies, 1996, 7, 31-34.	3.2	28
330	White-Light-Emitting Organic Electroluminescent Device Using Lanthanide Complexes. Japanese Journal of Applied Physics, 1996, 35, L394-L396.	1.5	169
331	Trends in Organic Electroluminescence. Kobunshi, 1996, 45, 152-152.	0.0	0
332	Synthesis of Triphenylamine-Containing Poly(methacrylamide) and Its Application to Organic Electroluminescent Devices Kobunshi Ronbunshu, 1995, 52, 216-220.	0.2	1
333	Adsorption of Poly(N-alkylsubstituted acrylamide)s onto Polystyrene Latexes Kobunshi Ronbunshu, 1995, 52, 504-511.	0.2	3
334	Stabilization of Anionic Polystrene Latex Dispersion by Poly(N-alkylsubstituted acrylamide)s in Aqueous Media Kobunshi Ronbunshu, 1995, 52, 559-566.	0.2	1
335	Synthesis and Interfacial Properties of Polymerizable and Nonpolymerizable Surfactants Having an Active Ester Group. Journal of Colloid and Interface Science, 1995, 172, 63-70.	9.4	13
336	Ferrocene as an effective initiator for copolymerization of styrene with maleic anhydride. Journal of Polymer Science Part A, 1995, 33, 967-971.	2.3	6
337	Organic electroluminescent device with an aromatic amine-containing polymer as a hole transport layer (I): Poly[N-[p-N′ -phenyl-N′-[1,1′-biphenyl-4′-[N″-phenyl-N″-(2-methylphenyl)amino]-4-aminc methacrylamide]. Polymers for Advanced Technologies, 1995, 6, 703-706.	o]] a benyl	6
338	Alternating copolymerization of a surface-active monomer having an active ester group with dialkyl fumarates. Polymer, 1995, 36, 4675-4681.	3.8	8
339	Multilayer White Light-Emitting Organic Electroluminescent Device. Science, 1995, 267, 1332-1334.	12.6	1,741
340	Ultraâ€lowâ€threshold europium chelate laser in morphologyâ€dependent resonances. Applied Physics Letters, 1995, 66, 1578-1580.	3.3	23
341	Europium chelate solid laser based on morphologyâ€dependent resonances. Applied Physics Letters, 1995, 67, 1060-1062.	3.3	28
342	Singleâ€layer white lightâ€emitting organic electroluminescent devices based on dyeâ€dispersed poly(Nâ€vinylcarbazole). Applied Physics Letters, 1995, 67, 2281-2283.	3.3	620

#	Article	IF	CITATIONS
343	Bright red lightâ€emitting organic electroluminescent devices having a europium complex as an emitter. Applied Physics Letters, 1994, 65, 2124-2126.	3.3	499
344	White lightâ€emitting organic electroluminescent devices using the poly(Nâ€vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994, 64, 815-817.	3.3	740
345	Charge transport polymers for organic electroluminescent devices. Macromolecular Symposia, 1994, 84, 81-90.	0.7	12
346	Bright organic electroluminescent devices with double-layer cathode. IEEE Transactions on Electron Devices, 1993, 40, 1342-1344.	3.0	79
347	1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics, 1993, 32, L917-L920.	1.5	190
348	Organic electroluminescent devices using lanthanide complexes. Journal of Alloys and Compounds, 1993, 192, 30-33.	5.5	134
349	Bright blue electroluminescence from poly(Nâ€vinylcarbazole). Applied Physics Letters, 1993, 63, 2627-2629.	3.3	304
350	Molecularly Doped Polymers for Organic Electroluminescent Devices. Molecular Crystals and Liquid Crystals, 1993, 227, 277-283.	0.3	27
351	Molecularly Doped Polymers as a Hole Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics, 1992, 31, L960-L962.	1.5	46
352	Optical Properties of Lanthanide Metal Ion Polymer Complexes. Materials Research Society Symposia Proceedings, 1992, 277, 65.	0.1	7
353	Organic electroluminescent devices based on molecularly doped polymers. Applied Physics Letters, 1992, 61, 761-763.	3.3	201
354	Plasma-polymerized carbon disulfide films as a hole transport layer in organic electroluminescent devices. Polymers for Advanced Technologies, 1992, 3, 429-431.	3.2	7
355	Radical copolymerization of an electron-accepting monomer, methyl cis-β-cyanoacrylate, with styrene or acrylonitrile. Journal of Polymer Science Part A, 1992, 30, 1187-1192.	2.3	5
356	Solvatochromic studies of interactions between surfactants and poly(N-substituted acrylamide)s. Journal of Colloid and Interface Science, 1992, 150, 338-343.	9.4	5
357	Electroluminescence from Polysilane Film Doped with Europium Complex. Chemistry Letters, 1991, 20, 1267-1270.	1.3	171
358	Solvatochromic probes for the investigation of polymer—micelle interactions. Journal of Colloid and Interface Science, 1991, 142, 326-330.	9.4	12
359	Poly(methylphenylsilane) film as a hole transport layer in electroluminescent devices. Applied Physics Letters, 1991, 59, 2760-2762.	3.3	103
360	Electroluminescence in a Terbium Complex. Chemistry Letters, 1990, 19, 657-660.	1.3	141