Yasuteru Urano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979457/publications.pdf

Version: 2024-02-01

161 papers 13,812 citations

41344 49 h-index 20961 115 g-index

174 all docs

174 docs citations

times ranked

174

13994 citing authors

#	Article	IF	CITATIONS
1	New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chemical Reviews, 2010, 110, 2620-2640.	47.7	1,927
2	Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species. Journal of Biological Chemistry, 2003, 278, 3170-3175.	3.4	1,116
3	Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine, 2009, 15, 104-109.	30.7	742
4	Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence Probes. Journal of the American Chemical Society, 2005, 127, 4888-4894.	13.7	637
5	Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging. Journal of the American Chemical Society, 2011, 133, 5680-5682.	13.7	524
6	Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis. Journal of the American Chemical Society, 2007, 129, 7313-7318.	13.7	431
7	Rapid Cancer Detection by Topically Spraying a γ-Glutamyltranspeptidase–Activated Fluorescent Probe. Science Translational Medicine, 2011, 3, 110ra119.	12.4	404
8	Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics. Nature Chemistry, 2017, 9, 279-286.	13.6	398
9	A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nature Chemistry, 2014, 6, 681-689.	13.6	374
10	Evolution of Group 14 Rhodamines as Platforms for Near-Infrared Fluorescence Probes Utilizing Photoinduced Electron Transfer. ACS Chemical Biology, 2011, 6, 600-608.	3.4	339
11	Sensitive \hat{l}^2 -galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nature Communications, 2015, 6, 6463.	12.8	334
12	Rational Principles for Modulating Fluorescence Properties of Fluorescein. Journal of the American Chemical Society, 2004, 126, 14079-14085.	13.7	314
13	Bioimaging of Nitric Oxide with Fluorescent Indicators Based on the Rhodamine Chromophore. Analytical Chemistry, 2001, 73, 1967-1973.	6.5	283
14	Development of NIR Fluorescent Dyes Based on Si–rhodamine for in Vivo Imaging. Journal of the American Chemical Society, 2012, 134, 5029-5031.	13.7	259
15	Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization. Journal of the American Chemical Society, 2013, 135, 409-414.	13.7	231
16	\hat{l}^2 -Galactosidase Fluorescence Probe with Improved Cellular Accumulation Based on a Spirocyclized Rhodol Scaffold. Journal of the American Chemical Society, 2011, 133, 12960-12963.	13.7	216
17	Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy. Journal of the American Chemical Society, 2017, 139, 13713-13719.	13.7	206
18	Mechanistic Background and Clinical Applications of Indocyanine Green Fluorescence Imaging of Hepatocellular Carcinoma. Annals of Surgical Oncology, 2014, 21, 440-448.	1.5	197

#	Article	IF	Citations
19	An Enzymatically Activated Fluorescence Probe for Targeted Tumor Imaging. Journal of the American Chemical Society, 2007, 129, 3918-3929.	13.7	161
20	Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nature Biotechnology, 2017, 35, 773-780.	17.5	157
21	Systemically Injectable Enzymeâ€Loaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors. Angewandte Chemie - International Edition, 2016, 55, 560-565.	13.8	149
22	Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nature Medicine, 2018, 24, 232-238.	30.7	139
23	Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation. EBioMedicine, 2016, 10, 204-215.	6.1	131
24	An Activatable Photosensitizer Targeted to γâ€Glutamyltranspeptidase. Angewandte Chemie - International Edition, 2017, 56, 10418-10422.	13.8	127
25	Development of a Series of Practical Fluorescent Chemical Tools To Measure pH Values in Living Samples. Journal of the American Chemical Society, 2018, 140, 5925-5933.	13.7	115
26	Development of a Series of Near-Infrared Dark Quenchers Based on Si-rhodamines and Their Application to Fluorescent Probes. Journal of the American Chemical Society, 2015, 137, 4759-4765.	13.7	109
27	Imaging of caspase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe. FEBS Letters, 1999, 453, 356-360.	2.8	108
28	Detection of <i>LacZ</i> â€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie - International Edition, 2016, 55, 9620-9624.	13.8	107
29	A Target Cell–Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Research, 2007, 67, 2791-2799.	0.9	105
30	Selective Ablation of βâ€Galactosidaseâ€Expressing Cells with a Rationally Designed Activatable Photosensitizer. Angewandte Chemie - International Edition, 2014, 53, 6772-6775.	13.8	102
31	Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity. Nature Communications, 2014, 5, 4519.	12.8	101
32	Fluorophoreâ^'Quencher Based Activatable Targeted Optical Probes for Detecting <i>in Vivo</i> Cancer Metastases. Molecular Pharmaceutics, 2009, 6, 386-395.	4.6	98
33	Rapid intraoperative visualization of breast lesions with \hat{I}^3 -glutamyl hydroxymethyl rhodamine green. Scientific Reports, 2015, 5, 12080.	3.3	89
34	Design and Development of Enzymatically Activatable Photosensitizer Based on Unique Characteristics of Thiazole Orange. Journal of the American Chemical Society, 2009, 131, 6058-6059.	13.7	72
35	Silicon Rhodamine-Based Near-Infrared Fluorescent Probe for Î ³ -Glutamyltransferase. Bioconjugate Chemistry, 2018, 29, 241-244.	3.6	72
36	Development of 2,6-carboxy-substituted boron dipyrromethene (BODIPY) as a novel scaffold of ratiometric fluorescent probes for live cell imaging. Chemical Communications, 2009, , 7015.	4.1	71

3

#	Article	IF	CITATIONS
37	Development of a reversible fluorescent probe for reactive sulfur species, sulfane sulfur, and its biological application. Chemical Communications, 2017, 53, 1064-1067.	4.1	70
38	Fluorescence Detection of Prostate Cancer by an Activatable Fluorescence Probe for PSMA Carboxypeptidase Activity. Journal of the American Chemical Society, 2019, 141, 10409-10416.	13.7	69
39	γâ€Glutamyltranspeptidase (GGT)â€Activatable Fluorescence Probe for Durable Tumor Imaging. Angewandte Chemie - International Edition, 2021, 60, 2125-2129.	13.8	69
40	Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Scientific Reports, 2016, 6, 26399.	3.3	65
41	Multicolor Activatable Raman Probes for Simultaneous Detection of Plural Enzyme Activities. Journal of the American Chemical Society, 2020, 142, 20701-20707.	13.7	64
42	Design and synthesis of a novel fluorescence probe for Zn2+ based on the spirolactam ring-opening process of rhodamine derivatives. Bioorganic and Medicinal Chemistry, 2011, 19, 1072-1078.	3.0	63
43	A Reversible Fluorescent Probe for Realâ€Time Liveâ€Cell Imaging and Quantification of Endogenous Hydropolysulfides. Angewandte Chemie - International Edition, 2018, 57, 9346-9350.	13.8	60
44	In Vivo Spectral Fluorescence Imaging of Submillimeter Peritoneal Cancer Implants Using a Lectin-Targeted Optical Agent. Neoplasia, 2006, 8, 607-IN2.	5.3	59
45	IL- $1\hat{l}^2$ Induces Pathologically Activated Osteoclasts Bearing Extremely High Levels of Resorbing Activity: A Possible Pathological Subpopulation of Osteoclasts, Accompanied by Suppressed Expression of Kindlin-3 and Talin-1. Journal of Immunology, 2018, 200, 218-228.	0.8	57
46	Establishment of Molecular Design Strategy To Obtain Activatable Fluorescent Probes for Carboxypeptidases. Journal of the American Chemical Society, 2018, 140, 1767-1773.	13.7	55
47	Rational design of boron dipyrromethene (BODIPY)-based photobleaching-resistant fluorophores applicable to a protein dynamics study. Chemical Communications, 2011, 47, 10055.	4.1	54
48	<i>In Vivo</i> Imaging of Intraperitoneally Disseminated Tumors in Model Mice by Using Activatable Fluorescent Small-Molecular Probes for Activity of Cathepsins. Bioconjugate Chemistry, 2014, 25, 1838-1846.	3.6	54
49	A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging. Chemical Communications, 2018, 54, 102-105.	4.1	54
50	Novel live imaging techniques of cellular functions and in vivo tumors based on precise design of small molecule-based †Activatable†fluorescence probes. Current Opinion in Chemical Biology, 2012, 16, 602-608.	6.1	52
51	Asymmetric Rhodamineâ€Based Fluorescent Probe for Multicolour In Vivo Imaging. Chemistry - A European Journal, 2016, 22, 1696-1703.	3.3	51
52	Activatable Photosensitizer for Targeted Ablation of <i>lacZ</i> Positive Cells with Single-Cell Resolution. ACS Central Science, 2019, 5, 1676-1681.	11.3	50
53	Targeted optical imaging of cancer cells using lectin-binding BODIPY conjugated avidin. Biochemical and Biophysical Research Communications, 2006, 348, 807-813.	2.1	49
54	Intraoperative imaging of hepatic cancers using \hat{l}^3 -glutamyltranspeptidase-specific fluorophore enabling real-time identification and estimation of recurrence. Scientific Reports, 2017, 7, 3542.	3.3	46

#	Article	IF	CITATIONS
55	Novel Hexosaminidase-Targeting Fluorescence Probe for Visualizing Human Colorectal Cancer. Bioconjugate Chemistry, 2016, 27, 973-981.	3.6	44
56	Multiplexed single-molecule enzyme activity analysis for counting disease-related proteins in biological samples. Science Advances, 2020, 6, eaay0888.	10.3	44
57	Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement. Scientific Reports, 2016, 5, 17838.	3.3	43
58	Evaluation of Enzymatic Activities in Living Systems with Small-molecular Fluorescent Substrate Probes. Analytical Sciences, 2015, 31, 257-265.	1.6	41
59	A Fluorescent Probe for Rapid, Highâ€Contrast Visualization of Folateâ€Receptorâ€Expressing Tumors Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 6015-6020.	13.8	41
60	A long-lived luminescent probe to sensitively detect arylamine N-acetyltransferase (NAT) activity of cells. Chemical Communications, 2012, 48, 2234.	4.1	40
61	Spontaneously Blinking Fluorophores Based on Nucleophilic Addition/Dissociation of Intracellular Glutathione for Live-Cell Super-resolution Imaging. Journal of the American Chemical Society, 2020, 142, 9625-9633.	13.7	40
62	Redâ€Shifted Fluorogenic Substrate for Detection of <i>lac</i> Zâ€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie - International Edition, 2018, 57, 15702-15706.	13.8	38
63	Design of Photostable, Activatable Nearâ€Infrared Photoacoustic Probes Using Tautomeric Benziphthalocyanine as a Platform. Angewandte Chemie - International Edition, 2019, 58, 7788-7791.	13.8	38
64	A Self-Quenched Galactosamine-Serum Albumin-RhodamineX Conjugate: A "Smart―Fluorescent Molecular Imaging Probe Synthesized with Clinically Applicable Material for Detecting Peritoneal Ovarian Cancer Metastases. Clinical Cancer Research, 2007, 13, 6335-6343.	7.0	37
65	A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxford, England), 2015, 64, 263-277.	1.5	37
66	Design and Synthesis of an Activatable Photoacoustic Probe for Hypochlorous Acid. Analytical Chemistry, 2019, 91, 9086-9092.	6.5	37
67	Photoacoustic Tomography of Human Hepatic Malignancies Using Intraoperative Indocyanine Green Fluorescence Imaging. PLoS ONE, 2014, 9, e112667.	2.5	36
68	Synthesis of unsymmetrical Si-rhodamine fluorophores and application to a far-red to near-infrared fluorescence probe for hypoxia. Chemical Communications, 2018, 54, 6939-6942.	4.1	36
69	Rapid Cancer Fluorescence Imaging Using A \hat{I}^3 -Glutamyltranspeptidase-Specific Probe For Primary Lung Cancer. Translational Oncology, 2016, 9, 203-210.	3.7	33
70	Development of an Azoreductase-based Reporter System with Synthetic Fluorogenic Substrates. ACS Chemical Biology, 2017, 12, 558-563.	3.4	33
71	An Activatable Photosensitizer Targeted to γâ€Glutamyltranspeptidase. Angewandte Chemie, 2017, 129, 10554-10558.	2.0	33
72	A Pilot Study of Fluorescent Imaging of Colorectal Tumors Using a γ-Glutamyl-Transpeptidase-Activatable Fluorescent Probe. Digestion, 2015, 91, 70-76.	2.3	32

#	Article	IF	Citations
73	Rapid and Accurate Visualization of Breast Tumors with a Fluorescent Probe Targeting α-Mannosidase 2C1. ACS Central Science, 2020, 6, 2217-2227.	11.3	30
74	Design strategy for germanium-rhodamine based pH-activatable near-infrared fluorescence probes suitable for biological applications. Communications Chemistry, 2019, 2, .	4.5	29
75	Systemically Injectable Enzymeâ€Loaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors. Angewandte Chemie, 2016, 128, 570-575.	2.0	28
76	Fluorescent imaging of superficial head and neck squamous cell carcinoma using a \hat{I}^3 -glutamyltranspeptidase-activated targeting agent: a pilot study. BMC Cancer, 2016, 16, 411.	2.6	28
77	Activatable fluorescent probes for hydrolase enzymes based on coumarin–hemicyanine hybrid fluorophores with large Stokes shifts. Chemical Communications, 2020, 56, 5617-5620.	4.1	28
78	A Fluorescent Probe for Rapid, Highâ€Contrast Visualization of Folateâ€Receptorâ€Expressing Tumors Inâ€Vivo. Angewandte Chemie, 2020, 132, 6071-6076.	2.0	28
79	Oral cancer intraoperative detection by topically spraying a \hat{I}^3 -glutamyl transpeptidase-activated fluorescent probe. Oral Oncology, 2016, 54, e16-e18.	1.5	26
80	Development of an Activatable Fluorescent Probe for Prostate Cancer Imaging. Bioconjugate Chemistry, 2017, 28, 2069-2076.	3.6	26
81	Pancreatic Compression during Lymph Node Dissection in Laparoscopic Gastrectomy: Possible Cause of Pancreatic Leakage. Journal of Gastric Cancer, 2018, 18, 134.	2.5	26
82	Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules, 2020, 25, 5964.	3.8	26
83	Red Fluorescence Probe Targeted to Dipeptidylpeptidase-IV for Highly Sensitive Detection of Esophageal Cancer. Bioconjugate Chemistry, 2019, 30, 1055-1060.	3.6	25
84	A highly sensitive, cell-membrane-permeable fluorescent probe for glutathione. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4363-4366.	2.2	24
85	Development of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability. Cell Calcium, 2016, 60, 256-265.	2.4	24
86	Design of spontaneously blinking fluorophores for live-cell super-resolution imaging based on quantum-chemical calculations. Chemical Communications, 2020, 56, 13173-13176.	4.1	24
87	Detection of NAD(P)H-dependent enzyme activity with dynamic luminescence quenching of terbium complexes. Chemical Communications, 2015, 51, 8319-8322.	4.1	22
88	Rapid diagnosis of lymph node metastasis in breast cancer using a new fluorescent method with ³ -glutamyl hydroxymethyl rhodamine green. Scientific Reports, 2016, 6, 27525.	3.3	22
89	Identification of Tissue-Restricted Bioreaction Suitable for in Vivo Targeting by Fluorescent Substrate Library-Based Enzyme Discovery. Journal of the American Chemical Society, 2015, 137, 12187-12190.	13.7	20
90	A Novel Topical Fluorescent Probe for Detection of Glioblastoma. Clinical Cancer Research, 2021, 27, 3936-3947.	7.0	20

#	Article	IF	CITATIONS
91	Intraoperative Visualization of Pancreatic Juice Leaking FromÂtheÂPancreatic Stump in a Swine Model. Gastroenterology, 2015, 149, 1334-1336.	1.3	18
92	Rapid and sensitive fluorescent imaging of tiny tumors in vivo and in clinical specimens. Current Opinion in Chemical Biology, 2016, 33, 9-15.	6.1	18
93	Development of enzyme-activated photosensitizer based on intramolecular electron transfer. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4320-4323.	2.2	17
94	Discovery of Cell-Type-Specific and Disease-Related Enzymatic Activity Changes via Global Evaluation of Peptide Metabolism. Journal of the American Chemical Society, 2017, 139, 3465-3472.	13.7	17
95	Factors affecting the uncaging efficiency of 500‬nm light-activatable BODIPY caging group. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1-5.	2.2	17
96	\hat{l}^2 -Galactosidase is a target enzyme for detecting peritoneal metastasis of gastric cancer. Scientific Reports, 2021, 11, 10664.	3.3	17
97	Molecular probes for fluorescence image-guided cancer surgery. Current Opinion in Chemical Biology, 2022, 67, 102112.	6.1	17
98	Unexpected Photoâ€instability of 2,6â€Sulfonamideâ€Substituted BODIPYs and Its Application to Caged GABA. ChemBioChem, 2016, 17, 1233-1240.	2.6	16
99	Calciprotein particle-induced cytotoxicity via lysosomal dysfunction and altered cholesterol distribution in renal epithelial HK-2 cells. Scientific Reports, 2020, 10, 20125.	3.3	16
100	Molecular design strategy of fluorogenic probes based on quantum chemical prediction of intramolecular spirocyclization. Communications Chemistry, 2020, 3, .	4.5	16
101	Detection of <i>LacZ</i> â€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie, 2016, 128, 9772-9776.	2.0	15
102	Development of Dipicolylamine-Modified Cyclodextrins for the Design of Selective Guest-Responsive Receptors for ATP. Molecules, 2018, 23, 635.	3.8	15
103	Torque Generation Mechanism of F1-ATPase upon NTP Binding. Biophysical Journal, 2014, 107, 156-164.	0.5	14
104	Feasibility of Using an Enzymatically Activatable Fluorescence Probe for the Rapid Evaluation of Pancreatic Tissue Obtained Using Endoscopic Ultrasound-Guided Fine Needle Aspiration: a Pilot Study. Molecular Imaging and Biology, 2016, 18, 463-471.	2.6	14
105	Nongenetic control of receptor signaling dynamics using a DNA-based optochemical tool. Chemical Communications, 2021, 57, 5969-5972.	4.1	14
106	Development of a fluorescent probe library enabling efficient screening of tumour-imaging probes based on discovery of biomarker enzymatic activities. Chemical Science, 2022, 13, 4474-4481.	7.4	14
107	Fluorescence detection of serum albumin with a turnover-based sensor utilizing Kemp elimination reaction. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3464-3467.	2.2	13
108	A novel sialidase-activatable fluorescence probe with improved stability for the sensitive detection of sialidase. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126860.	2.2	13

7

#	Article	IF	Citations
109	γâ€Glutamyltranspeptidase (GGT)â€Activatable Fluorescence Probe for Durable Tumor Imaging. Angewandte Chemie, 2021, 133, 2153-2157.	2.0	13
110	Rapid detection of superficial head and neck squamous cell carcinoma by topically spraying fluorescent probe targeting dipeptidyl peptidaseâ€IV. Head and Neck, 2018, 40, 1466-1475.	2.0	12
111	Detection of early adenocarcinoma of the esophagogastric junction by spraying an enzyme-activatable fluorescent probe targeting Dipeptidyl peptidase-IV. BMC Cancer, 2020, 20, 64.	2.6	12
112	Photoactivatable fluorophores for durable labelling of individual cells. Chemical Communications, 2021, 57, 5802-5805.	4.1	12
113	Development of Chemical Tools to Monitor and Control Isoaspartyl Peptide Methyltransferase Activity. Angewandte Chemie - International Edition, 2017, 56, 153-157.	13.8	11
114	A novel method for rapid detection of a Helicobacter pylori infection using a \hat{l}^3 -glutamyltranspeptidase-activatable fluorescent probe. Scientific Reports, 2019, 9, 9467.	3.3	11
115	Antibody Clicking as a Strategy to Modify Antibody Functionalities on the Surface of Targeted Cells. Journal of the American Chemical Society, 2020, 142, 15644-15648.	13.7	11
116	Development and validation of an improved diced electrophoresis gel assay cutter-plate system for enzymomics studies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 82-87.	2.3	10
117	Metabolic-Pathway-Oriented Screening Targeting S-Adenosyl-I-methionine Reveals the Epigenetic Remodeling Activities of Naturally Occurring Catechols. Journal of the American Chemical Society, 2020, 142, 21-26.	13.7	10
118	Amino BODIPY-Based Blue Fluorescent Probes for Aldehyde Dehydrogenase 1-Expressing Cells. Bioconjugate Chemistry, 2021, 32, 234-238.	3.6	10
119	Discovery of an F-actin–binding small molecule serving as a fluorescent probe and a scaffold for functional probes. Science Advances, 2021, 7, eabg8585.	10.3	10
120	Confocal Bioluminescence Imaging for Living Tissues with a Caged Substrate of Luciferin. Analytical Chemistry, 2016, 88, 6231-6238.	6.5	9
121	A Reversible Fluorescent Probe for Realâ€Time Liveâ€Cell Imaging and Quantification of Endogenous Hydropolysulfides. Angewandte Chemie, 2018, 130, 9490-9494.	2.0	9
122	Development of ratiometric carbohydrate sensor based on boron dipyrromethene (BODIPY) scaffold. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126684.	2.2	9
123	A novel liver-specific fluorescent anti-cancer drug delivery system using indocyanine green. Scientific Reports, 2019, 9, 3044.	3.3	9
124	Fluorescence Probes for Imaging Basic Carboxypeptidase Activity in Living Cells with High Intracellular Retention. Analytical Chemistry, 2021, 93, 3470-3476.	6.5	9
125	Detection of NAD(P)H-dependent enzyme activity by time-domain ratiometry of terbium luminescence. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2314-2317.	2.2	8
126	High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons. Neuropharmacology, 2016, 100, 66-75.	4.1	8

#	Article	IF	Citations
127	Development of Highly Selective Fluorescent Probe Enabling Flow-Cytometric Isolation of ALDH3A1-Positive Viable Cells. Bioconjugate Chemistry, 2017, 28, 302-306.	3.6	8
128	Discovery of a pyruvylated peptide-metabolizing enzyme using a fluorescent substrate-based protein discovery technique. Chemical Communications, 2016, 52, 4377-4380.	4.1	7
129	Redâ€Shifted Fluorogenic Substrate for Detection of lac Zâ€Positive Cells in Living Tissue with Singleâ€Cell Resolution. Angewandte Chemie, 2018, 130, 15928-15932.	2.0	7
130	Hybrid cell reactor system from Escherichia coli protoplast cells and arrayed lipid bilayer chamber device. Scientific Reports, 2018, 8, 11757.	3.3	7
131	Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. Journal of Physical Chemistry B, 2018, 122, 6906-6911.	2.6	7
132	Highly sensitive fluorescence imaging of cancer with avidin-protease probe conjugate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126663.	2.2	7
133	Spray Fluorescent Probes for Fluorescence-Guided Neurosurgery. Frontiers in Oncology, 2019, 9, 727.	2.8	7
134	A novel method for assessing the renal biopsy specimens using an activatable fluorescent probe. Scientific Reports, 2020, 10, 12094.	3.3	7
135	Fluorescence Imaging Using Enzyme-Activatable Probes for Real-Time Identification of Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 714527.	2.8	7
136	Matrix metalloprotease–14 is a target enzyme for detecting peritoneal metastasis in gastric cancer. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102420.	2.6	7
137	Rapid and Sensitive Detection of Cancer Cells with Activatable Fluorescent Probes for Enzyme Activity. Methods in Molecular Biology, 2021, 2274, 193-206.	0.9	6
138	Rapid Visualization of Deeply Located Tumors <i>In Vivo</i> by Intravenous Administration of a Î ³ -Glutamyltranspeptidase-Activated Fluorescent Probe. Bioconjugate Chemistry, 2022, 33, 523-529.	3.6	6
139	PMEPA1 and NEDD4 control the proton production of osteoclasts by regulating vesicular trafficking. FASEB Journal, 2021, 35, e21281.	0.5	5
140	Molecular design of near-infrared (NIR) fluorescent probes targeting exopeptidase and application for detection of dipeptidyl peptidase 4 (DPP-4) activity. RSC Chemical Biology, 2022, 3, 859-867.	4.1	5
141	Separation-Based Enzymomics Assay for the Discovery of Altered Peptide-Metabolizing Enzymatic Activities in Biosamples. Analytical Chemistry, 2019, 91, 11497-11501.	6.5	4
142	Establishment of live-cell-based coupled assay system for identification of compounds to modulate metabolic activities of cells. Cell Reports, 2021, 36, 109311.	6.4	4
143	Rapid imaging of lung cancer using a red fluorescent probe to detect dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase activities. Scientific Reports, 2022, 12, .	3.3	4
144	Design of Photostable, Activatable Nearâ€Infrared Photoacoustic Probes Using Tautomeric Benziphthalocyanine as a Platform. Angewandte Chemie, 2019, 131, 7870-7873.	2.0	3

#	Article	IF	Citations
145	Companion Diagnosis for Retinal Neuroprotective Treatment by Real-Time Imaging of Calpain Activation Using a Novel Fluorescent Probe. Bioconjugate Chemistry, 2020, 31, 2241-2251.	3.6	3
146	Rapid fluorescence imaging of human hepatocellular carcinoma using the \hat{l}^2 -galactosidase-activatable fluorescence probe SPiDER- \hat{l}^2 Gal. Scientific Reports, 2021, 11, 17946.	3.3	3
147	Rapid visualization of mammary gland tumor lesions of dogs using the enzyme-activated fluorogenic probe; Î ³ -glutamyl hydroxymethyl rhodamine green. Journal of Veterinary Medical Science, 2022, 84, 593-599.	0.9	3
148	Leading-edge elongation by follower cell interruption in advancing epithelial cell sheets. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119903119.	7.1	3
149	Chemical toolbox for †live' biochemistry to understand enzymatic functions in living systems. Journal of Biochemistry, 2019, 167, 139-149.	1.7	2
150	Development of a platform for activatable fluorescent substrates of glucose transporters (GLUTs). Bioorganic and Medicinal Chemistry, 2019, 27, 2122-2126.	3.0	2
151	Éছ/glutamyl hydroxymethyl rhodamine green fluorescence as a prognostic indicator for lung cancer. General Thoracic and Cardiovascular Surgery, 2020, 68, 1418-1424.	0.9	2
152	Neural and behavioral control in <i>Caenorhabditis elegans</i> by a yellow-light–activatable caged compound. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
153	Photoacoustic imaging of small organic molecule-based photoacoustic probe in subcutaneous tumor using P(VDF-TrFE) acoustic sensor. , 2015, , .		1
154	Onâ€Site Monitoring of Postoperative Bile Leakage Using Bilirubinâ€Inducible Fluorescent Protein. World Journal of Surgery, 2020, 44, 4245-4253.	1.6	1
155	Development of a small-molecule-based activatable photoacoustic probe. Methods in Enzymology, 2021, 657, 1-19.	1.0	1
156	Development of an intraoperative breast cancer margin assessment method using quantitative fluorescence measurements. Scientific Reports, 2022, 12, .	3.3	1
157	In Vivo Tiny Tumor Imaging with Precisely Designed Novel Small Molecule-Based Fluorescence Probes. The Review of Laser Engineering, 2010, 38, 408-415.	0.0	0
158	Development of Spontaneously Blinking Fluorophores for Super-Resolution Imaging. Seibutsu Butsuri, 2015, 55, 031-033.	0.1	0
159	SURG-11. PATHOLOGICAL INVESTIGATION OF NOVEL SPRAY-TYPE FLUORESCENT PROBES FOR BRAIN TUMORS. Neuro-Oncology, 2018, 20, vi252-vi253.	1.2	0
160	BOT-03 INVESTIGATION OF NOVEL SPRAY TYPE FLUORESCENT PROBE FOR GLIOBLASTOMA DETECTION. Neuro-Oncology Advances, 2019, 1, ii12-ii12.	0.7	0
161	Realization of rapid cancer imaging by non-DDS fluorescent probe technology and its future vision of cooperation with DDS. Drug Delivery System, 2021, 36, 51-66.	0.0	0