
Paul A Northcott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	27.8	8,060
2	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	27.8	1,872
3	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	7.7	1,536
4	Medulloblastoma Comprises Four Distinct Molecular Variants. Journal of Clinical Oncology, 2011, 29, 1408-1414.	1.6	1,131
5	The landscape of genomic alterations across childhood cancers. Nature, 2018, 555, 321-327.	27.8	1,068
6	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	7.7	863
7	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	27.8	787
8	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	27.8	765
9	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
10	Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations. Cell, 2012, 148, 59-71.	28.9	743
11	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
12	Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012, 488, 106-110.	27.8	675
13	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.	21.4	674
14	The Genetic Landscape of the Childhood Cancer Medulloblastoma. Science, 2011, 331, 435-439.	12.6	652
15	Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell, 2013, 24, 660-672.	16.8	633
16	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	16.8	627
17	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	28.4	560
18	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	27.8	520

#	Article	IF	CITATIONS
19	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	16.8	494
20	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	7.7	478
21	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29, 379-393.	16.8	438
22	Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genetics, 2009, 41, 465-472.	21.4	391
23	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
24	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 2014, 510, 537-541.	27.8	378
25	Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482, 529-533.	27.8	376
26	Medulloblastoma. Nature Reviews Disease Primers, 2019, 5, 11.	30.5	376
27	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell, 2013, 153, 1064-1079.	28.9	348
28	YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes and Development, 2009, 23, 2729-2741.	5.9	332
29	Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nature Genetics, 2017, 49, 65-74.	21.4	326
30	Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 2010, 466, 632-636.	27.8	324
31	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathologica, 2012, 123, 615-626.	7.7	318
32	Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature, 2016, 530, 57-62.	27.8	318
33	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	10.7	307
34	Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 2015, 129, 669-678.	7.7	277
35	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	10.7	274
36	The miR-17/92 Polycistron Is Up-regulated in Sonic Hedgehog–Driven Medulloblastomas and Induced by N-myc in Sonic Hedgehog–Treated Cerebellar Neural Precursors. Cancer Research, 2009, 69, 3249-3255.	0.9	273

#	Article	IF	CITATIONS
37	Resolving medulloblastoma cellular architecture by single-cell genomics. Nature, 2019, 572, 74-79.	27.8	273
38	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	10.7	268
39	An Animal Model of MYC-Driven Medulloblastoma. Cancer Cell, 2012, 21, 155-167.	16.8	267
40	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
41	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
42	The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology, 2012, 8, 340-351.	10.1	261
43	Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathologica, 2013, 126, 907-915.	7.7	254
44	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	7.7	244
45	Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 2015, 6, 7391.	12.8	244
46	Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma. Cancer Cell, 2014, 26, 33-47.	16.8	241
47	MicroRNA-199b-5p Impairs Cancer Stem Cells through Negative Regulation of HES1 in Medulloblastoma. PLoS ONE, 2009, 4, e4998.	2.5	233
48	Adult Medulloblastoma Comprises Three Major Molecular Variants. Journal of Clinical Oncology, 2011, 29, 2717-2723.	1.6	215
49	Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 2011, 122, 231-240.	7.7	195
50	Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica, 2014, 128, 279-289.	7.7	191
51	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathologica, 2019, 138, 309-326.	7.7	180
52	Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC. Cancer Cell, 2012, 21, 601-613.	16.8	177
53	HDAC5 and HDAC9 in Medulloblastoma: Novel Markers for Risk Stratification and Role in Tumor Cell Growth. Clinical Cancer Research, 2010, 16, 3240-3252.	7.0	175
54	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	27.8	170

#	Article	IF	CITATIONS
55	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	7.7	169
56	A Single-Cell Transcriptional Atlas of the Developing Murine Cerebellum. Current Biology, 2018, 28, 2910-2920.e2.	3.9	158
57	Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncology, The, 2018, 19, 768-784.	10.7	151
58	Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nature Reviews Cancer, 2020, 20, 42-56.	28.4	147
59	Pleiotropic role for <i>MYCN</i> in medulloblastoma. Genes and Development, 2010, 24, 1059-1072.	5.9	146
60	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146
61	Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2018, 34, 396-410.e8.	16.8	146
62	<i>FSTL5</i> Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma. Journal of Clinical Oncology, 2011, 29, 3852-3861.	1.6	143
63	Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 2012, 12, 871-884.	2.8	142
64	DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathologica, 2013, 125, 359-371.	7.7	133
65	Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathologica, 2014, 128, 137-149.	7.7	125
66	A biobank of patient-derived pediatric brain tumor models. Nature Medicine, 2018, 24, 1752-1761.	30.7	124
67	MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Molecular Cell, 2018, 70, 825-841.e6.	9.7	123
68	Treatment of Children and Adolescents With Metastatic Medulloblastoma and Prognostic Relevance of Clinical and Biologic Parameters. Journal of Clinical Oncology, 2016, 34, 4151-4160.	1.6	121
69	A cellâ€based model system links chromothripsis with hyperploidy. Molecular Systems Biology, 2015, 11, 828.	7.2	118
70	Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nature Communications, 2017, 8, 14758.	12.8	118
71	UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nature Genetics, 2018, 50, 883-894.	21.4	117
72	LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathologica, 2012, 124, 875-881.	7.7	115

Paul A Northcott

#	Article	IF	CITATIONS
73	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	21.4	112
74	Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03). Journal of Clinical Oncology, 2021, 39, 822-835.	1.6	106
75	OTX2 Is Critical for the Maintenance and Progression of Shh-Independent Medulloblastomas. Cancer Research, 2010, 70, 181-191.	0.9	104
76	Tumour-associated macrophages exhibit anti-tumoural properties in Sonic Hedgehog medulloblastoma. Nature Communications, 2019, 10, 2410.	12.8	99
77	An Epigenetic Genome-Wide Screen Identifies <i>SPINT2</i> as a Novel Tumor Suppressor Gene in Pediatric Medulloblastoma. Cancer Research, 2008, 68, 9945-9953.	0.9	95
78	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature, 2020, 580, 396-401.	27.8	94
79	Children's Oncology Group Phase III Trial of Reduced-Dose and Reduced-Volume Radiotherapy With Chemotherapy for Newly Diagnosed Average-Risk Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 2685-2697.	1.6	91
80	Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathologica, 2015, 129, 449-457.	7.7	80
81	Personalizing the Treatment of Pediatric Medulloblastoma: Polo-like Kinase 1 as a Molecular Target in High-Risk Children. Cancer Research, 2013, 73, 6734-6744.	0.9	79
82	scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nature Communications, 2019, 10, 5829.	12.8	77
83	Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies. PLoS ONE, 2013, 8, e66621.	2.5	74
84	The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer-Related Genes and Is an Indicator of Poor Prognosis. American Journal of Pathology, 2012, 181, 1762-1772.	3.8	73
85	Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro-Oncology, 2013, 15, 1644-1651.	1.2	73
86	Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncology, The, 2015, 16, e293-e302.	10.7	72
87	Targeting the enhancer of zeste homologue 2 in medulloblastoma. International Journal of Cancer, 2012, 131, 1800-1809.	5.1	71
88	The Genetics of Pediatric Brain Tumors. Current Neurology and Neuroscience Reports, 2010, 10, 215-223.	4.2	69
89	Genetic and Epigenetic Inactivation of Kruppel-like Factor 4 in Medulloblastoma. Neoplasia, 2010, 12, 20-27.	5.3	69
90	Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes and Development, 2012, 26, 1780-1796.	5.9	68

#	Article	IF	CITATIONS
91	Hypermutation of the Inactive X Chromosome Is a Frequent Event in Cancer. Cell, 2013, 155, 567-581.	28.9	67
92	Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 2012, 123, 515-527.	7.7	66
93	Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and Polycomb in Gene Regulation. Cancer Cell, 2019, 35, 95-110.e8.	16.8	65
94	Advances in the classification of pediatric brain tumors through DNA methylation profiling: From research tool to frontline diagnostic. Cancer, 2018, 124, 4168-4180.	4.1	64
95	Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell, 2021, 39, 1519-1530.e4.	16.8	64
96	Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma. Cancer Research, 2010, 70, 8003-8014.	0.9	62
97	Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget, 2016, 7, 28169-28182.	1.8	62
98	Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive Myc-Driven Group 3 Medulloblastoma. Cell Reports, 2017, 18, 2907-2917.	6.4	61
99	Efficacy of Carboplatin and Isotretinoin in Children With High-risk Medulloblastoma. JAMA Oncology, 2021, 7, 1313.	7.1	61
100	MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathologica, 2012, 123, 529-538.	7.7	60
101	CXCR4 Activation Defines a New Subgroup of Sonic Hedgehog–Driven Medulloblastoma. Cancer Research, 2012, 72, 122-132.	0.9	58
102	Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nature Communications, 2019, 10, 332.	12.8	55
103	Silencing of Thrombospondin-1 Is Critical for Myc-Induced Metastatic Phenotypes in Medulloblastoma. Cancer Research, 2010, 70, 8199-8210.	0.9	54
104	Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathologica, 2014, 128, 123-136.	7.7	54
105	Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like Kinases. Cancer Research, 2013, 73, 6310-6322.	0.9	52
106	NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma. Cancer Cell, 2018, 33, 435-449.e6.	16.8	52
107	Foretinib Is Effective Therapy for Metastatic Sonic Hedgehog Medulloblastoma. Cancer Research, 2015, 75, 134-146.	0.9	51
108	FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genetics, 2011, 204, 577-588.	0.4	50

#	Article	IF	CITATIONS
109	Germline <i>GPR161</i> Mutations Predispose to Pediatric Medulloblastoma. Journal of Clinical Oncology, 2020, 38, 43-50.	1.6	50
110	Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurgical Focus, 2010, 28, E6.	2.3	48
111	DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. Developmental Cell, 2020, 54, 455-470.e5.	7.0	47
112	Patient-derived orthotopic xenografts of pediatric brain tumors: a St. Jude resource. Acta Neuropathologica, 2020, 140, 209-225.	7.7	45
113	Functional Genomics Identifies Drivers of Medulloblastoma Dissemination. Cancer Research, 2012, 72, 4944-4953.	0.9	44
114	Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus study. Acta Neuropathologica, 2021, 141, 771-785.	7.7	44
115	The Shh Receptor Boc Promotes Progression of Early Medulloblastoma to Advanced Tumors. Developmental Cell, 2014, 31, 34-47.	7.0	43
116	Phase II Study of Nonmetastatic Desmoplastic Medulloblastoma in Children Younger Than 4 Years of Age: A Report of the Children's Oncology Group (ACNS1221). Journal of Clinical Oncology, 2020, 38, 223-231.	1.6	40
117	Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends in Genetics, 2021, 37, 235-250.	6.7	40
118	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	1.6	40
119	Medulloblastoma genomics in the modern molecular era. Brain Pathology, 2020, 30, 679-690.	4.1	39
120	The Epigenetics of Brain Tumors. Methods in Molecular Biology, 2012, 863, 139-153.	0.9	38
121	Gliomatosis cerebri in children shares molecular characteristics with other pediatric gliomas. Acta Neuropathologica, 2016, 131, 299-307.	7.7	38
122	DNA-methylation profiling discloses significant advantages over NanoString method for molecular classification of medulloblastoma. Acta Neuropathologica, 2017, 134, 965-967.	7.7	38
123	Mouse models of medulloblastoma. Chinese Journal of Cancer, 2011, 30, 442-449.	4.9	38
124	Tuberous Sclerosis Complex Suppression in Cerebellar Development and Medulloblastoma: Separate Regulation of Mammalian Target of Rapamycin Activity and p27Kip1 Localization. Cancer Research, 2009, 69, 7224-7234.	0.9	37
125	The Role of Chromatin Remodeling in Medulloblastoma. Brain Pathology, 2013, 23, 193-199.	4.1	37
126	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	5.2	37

#	Article	IF	CITATIONS
127	Risk-adapted therapy and biological heterogeneity in pineoblastoma: integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials. Acta Neuropathologica, 2020, 139, 259-271.	7.7	36
128	Proteomic analysis of Medulloblastoma reveals functional biology with translational potential. Acta Neuropathologica Communications, 2018, 6, 48.	5.2	35
129	Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.	7.7	34
130	Normal and oncogenic roles for microRNAs in the developing brain. Cell Cycle, 2009, 8, 4049-4054.	2.6	30
131	Subgroup-specific alternative splicing in medulloblastoma. Acta Neuropathologica, 2012, 123, 485-499.	7.7	28
132	Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nature Communications, 2021, 12, 4089.	12.8	27
133	Canonical <scp>TGF</scp> â€i² Pathway Activity Is a Predictor of <scp>SHH</scp> â€Driven Medulloblastoma Survival and Delineates Putative Precursors in Cerebellar Development. Brain Pathology, 2013, 23, 178-191.	4.1	26
134	Bithalamic gliomas may be molecularly distinct from their unilateral highâ€grade counterparts. Brain Pathology, 2018, 28, 112-120.	4.1	26
135	Large 1p36 Deletions Affecting Arid1a Locus Facilitate Mycn-Driven Oncogenesis in Neuroblastoma. Cell Reports, 2020, 30, 454-464.e5.	6.4	26
136	Genomic Analysis of Childhood Brain Tumors: Methods for Genome-Wide Discovery and Precision Medicine Become Mainstream. Journal of Clinical Oncology, 2017, 35, 2346-2354.	1.6	25
137	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. Cell Reports Medicine, 2020, 1, 100038.	6.5	24
138	PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Child's Nervous System, 2011, 27, 1243-1249.	1.1	21
139	MyoD Is a Tumor Suppressor Gene in Medulloblastoma. Cancer Research, 2013, 73, 6828-6837.	0.9	21
140	Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. ELife, 2016, 5, .	6.0	21
141	Proteomic profiling of high risk medulloblastoma reveals functional biology. Oncotarget, 2015, 6, 14584-14595.	1.8	20
142	Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Reports, 2021, 35, 109302.	6.4	19
143	Deep Sequencing Identifies <i>IDH1</i> R132S Mutation in Adult Medulloblastoma. Journal of Clinical Oncology, 2015, 33, e27-e31.	1.6	18
144	SWI/SNF complex heterogeneity is related to polyphenotypic differentiation, prognosis, and immune response in rhabdoid tumors. Neuro-Oncology, 2020, 22, 785-796.	1.2	18

#	Article	IF	CITATIONS
145	Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathologica, 2018, 135, 635-638.	7.7	17
146	Functional loss of a noncanonical BCOR–PRC1.1 complex accelerates SHH-driven medulloblastoma formation. Genes and Development, 2020, 34, 1161-1176.	5.9	16
147	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13, .	12.8	16
148	Intertumoral and Intratumoral Heterogeneity as a Barrier for Effective Treatment of Medulloblastoma. Neurosurgery, 2013, 60, 57-63.	1.1	13
149	Aberrant immunostaining pattern of the CD24 glycoprotein in clinical samples and experimental models of pediatric medulloblastomas. Journal of Neuro-Oncology, 2015, 123, 1-13.	2.9	13
150	Keeping it real to kill glioblastoma. Nature, 2017, 547, 291-292.	27.8	13
151	Vorinostat and isotretinoin with chemotherapy in young children with embryonal brain tumors: A report from the Pediatric Brain Tumor Consortium (PBTC-026). Neuro-Oncology, 2022, 24, 1178-1190.	1.2	13
152	Bridging the treatment gap in infant medulloblastoma: molecularly informed outcomes of a globally feasible regimen. Neuro-Oncology, 2020, 22, 1873-1881.	1.2	12
153	Circulating tumor DNA profiling for childhood brain tumors: Technical challenges and evidence for utility. Laboratory Investigation, 2022, 102, 134-142.	3.7	11
154	Calculating a cure for cancer: managing medulloblastoma MATH1-ematically. Expert Review of Neurotherapeutics, 2010, 10, 1489-1492.	2.8	7
155	WNT-activated embryonal tumors of the pineal region: ectopic medulloblastomas or a novel pineoblastoma subgroup?. Acta Neuropathologica, 2020, 140, 595-597.	7.7	7
156	Depletion of kinesin motor KIF20A to target cell fate control suppresses medulloblastoma tumour growth. Communications Biology, 2021, 4, 552.	4.4	5
157	A genetic mouse model with postnatal <i>Nf1</i> and <i>p53</i> loss recapitulates the histology and transcriptome of human malignant peripheral nerve sheath tumor. Neuro-Oncology Advances, 2021, 3, vdab129.	0.7	3
158	Revised clinical and molecular risk strata define the incidence and pattern of failure in medulloblastoma following risk-adapted radiotherapy and dose-intensive chemotherapy: results from a phase III multi-institutional study. Neuro-Oncology, 2022, 24, 1166-1175.	1.2	2
159	Low-coverage whole-genome sequencing of cerebrospinal-fluid-derived cell-free DNA in brain tumor patients. STAR Protocols, 2022, 3, 101292.	1.2	2
160	MEDB-69. Clinical and molecular meta-analysis of three major medulloblastoma clinical trials (ACNS0331, SJMB03, ACNS0332) uncovers novel strategies to improve risk-stratified therapy. Neuro-Oncology, 2022, 24, i122-i122.	1.2	1
161	MEDB-78. Unified rhombic lip origins of Group 3 and Group 4 medulloblastoma. Neuro-Oncology, 2022, 24, i124-i125.	1.2	1
162	BIOM-36. SERIAL ASSESSMENT OF MEASURABLE RESIDUAL DISEASE IN MEDULLOBLASTOMA LIQUID BIOPSIES. Neuro-Oncology, 2021, 23, vi18-vi19.	1.2	0

#	Article	IF	CITATIONS
163	INSP-09. Using genetically engineered mouse models and patient-derived orthotopic xenografts to develop new therapies for pediatric brain tumors Neuro-Oncology, 2022, 24, i188-i188.	1.2	0