
Jianghong Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979291/publications.pdf Version: 2024-02-01

LIANCHONG DENC

#	Article	IF	CITATIONS
1	Geochemistry and genesis of the Nadun Nb-enriched arc basalt in the Duolong mineral district, western Tibet: Indication of ridge subduction. Geoscience Frontiers, 2022, 13, 101283.	8.4	8
2	A comprehensive overview on the origin of intrusive rocks and polymetallic mineralization in the Tongling ore-cluster region, lower Yangtze River Metallogenic Belt: Geological and geochemical constraints. Ore Geology Reviews, 2022, 141, 104625.	2.7	5
3	Large iron isotope fractionation during mantle wedge serpentinization: Implications for iron isotopes of arc magmas. Earth and Planetary Science Letters, 2022, 583, 117423.	4.4	11
4	Petrogenesis and metallogenic implications of the Miocene granite porphyry in the Jiama Cu-polymetallic deposit, Gangdese belt, South Tibet. Journal of Geochemical Exploration, 2022, 237, 106998.	3.2	1
5	Fluid-rock interactions at shallow depths in subduction zone: Insights from trace elements and B isotopic composition of metabasites from the Mariana forearc. Lithos, 2022, 422-423, 106730.	1.4	0
6	Boron, arsenic and antimony recycling in subduction zones: New insights from interactions between forearc serpentinites and CO2-rich fluids at the slab-mantle interface. Geochimica Et Cosmochimica Acta, 2021, 298, 21-42.	3.9	9
7	Geochemistry of subducted metabasites exhumed from the Mariana forearc: Implications for Pacific seamount subduction. Geoscience Frontiers, 2021, 12, 101117.	8.4	12
8	MORB-like δ56Fe values unveil the effect of subduction on the South China Sea basalts. Chemical Geology, 2021, 569, 120124.	3.3	8
9	Genesis and mineralization potential of the Late Cretaceous Chemen granodioritic intrusion in the southern Gangdese magmatic belt, Tibet. Journal of Asian Earth Sciences, 2021, 217, 104829.	2.3	6
10	Inherited source affinity of Li and Hf isotopes for porphyry copper deposits from subduction and collisional settings. Ore Geology Reviews, 2021, 138, 104328.	2.7	4
11	Statistical analysis on secular records of igneous geochemistry: Implication for the early <scp>Archean</scp> plate tectonics. Geological Journal, 2020, 55, 994-1002.	1.3	11
12	Origin and tectonic implications of ferroan alkali-calcic granitoids from the Hawal Massif, east-eastern Nigeria terrane: clues from geochemistry and zircon U-Pb-Hf isotopes. International Geology Review, 2020, 62, 129-152.	2.1	26
13	Geochronological and geochemical studies of adakites from Tethyan Belt, Western Pakistan: A clue to geodynamics and Cu-Au mineralization. International Geology Review, 2020, 62, 1273-1293.	2.1	3
14	Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20180425.	3.4	33
15	Petrogenesis of the peralkaline Dutsen Wai and Ropp complexes in the Nigerian younger granites: implications for crucial metal enrichments. International Geology Review, 2020, , 1-25.	2.1	8
16	An overview on the origin of adakites/adakitic rocks and related porphyry Cu-Au mineralization, Northern Luzon, Philippines. Ore Geology Reviews, 2020, 124, 103610.	2.7	17
17	Zinc isotopic systematics of the South China Sea basalts and implications for its behavior during plate subduction. Chemical Geology, 2020, 541, 119582.	3.3	8
18	Early cretaceous transformation from Pacific to Neo-Tethys subduction in the SW Pacific Ocean: Constraints from Pb-Sr-Nd-Hf isotopes of the Philippine arc. Geochimica Et Cosmochimica Acta, 2020, 285, 21-40.	3.9	15

JIANGHONG DENG

#	Article	IF	CITATIONS
19	The Role of Magma Mixing in Generating Granodioritic Intrusions Related to Cu–W Mineralization: A Case Study from Qiaomaishan Deposit, Eastern China. Minerals (Basel, Switzerland), 2020, 10, 171.	2.0	5
20	Genesis of Cretaceous igneous rocks and its related large scale porphyry Cu-Au mineralization in Chating, the Middle-Lower Yangtze River Metallogenic Belt: The geochemical constrains. Ore Geology Reviews, 2020, 127, 103793.	2.7	8
21	Ore genesis and fluid evolution of the Qiaomaishan Cu–W deposit, in the Middle-Lower Yangtze River Metallogenic Belt: Evidence from in situ analyses of apatite and scheelite. Ore Geology Reviews, 2020, 127, 103864.	2.7	9
22	Formation of the Granodiorite-Hosting Magushan Cu–Mo Polymetallic Deposit in Southern Anhui, Eastern China: Evidences from Geochronology and Geochemistry. Minerals (Basel, Switzerland), 2019, 9, 475.	2.0	12
23	Early Cretaceous adakite from the Atlas porphyry Cu-Au deposit in Cebu Island, Central Philippines: Partial melting of subducted oceanic crust. Ore Geology Reviews, 2019, 110, 102937.	2.7	32
24	Early Neoproterozoic evolution of Southeast Pakistan: evidence from geochemistry, geochronology, and isotopic composition of the Nagarparkar Igneous Complex. International Geology Review, 2019, 61, 1391-1408.	2.1	14
25	Geological study and significance of typical gold deposits in eastern Qinzhou-Hangzhou metallogenic belt: Constraint from Tianjingshan gold deposit in south Anhui Province. Journal of Geochemical Exploration, 2018, 190, 87-108.	3.2	6
26	Study of late-Mesozoic magmatic rocks and their related copper-gold-polymetallic deposits in the Guichi ore-cluster district, Lower Yangtze River Metallogenic Belt, East China. International Geology Review, 2018, 60, 1404-1434.	2.1	26
27	Mineralization, Geochemistry and Zircon Uâ€₽b Ages of the Paodaoling Porphyry Gold Deposit in the Guichi Region, Lower Yangtze Metallogenic Belt, Eastern China. Acta Geologica Sinica, 2018, 92, 706-732.	1.4	3
28	Geochemical and zircon U–Pb geochronological study of the Yangshan A-type granite: Insights into the geological evolution in south Anhui, eastern Jiangnan Orogen. Lithos, 2017, 284-285, 156-170.	1.4	42
29	Early Cretaceous high-Mg adakites associated with Cu-Au mineralization in the Cebu Island, Central Philippines: Implication for partial melting of the paleo-Pacific Plate. Ore Geology Reviews, 2017, 88, 251-269.	2.7	19
30	Geochronology, geochemistry and Hf–Sr–Nd isotopes of the ore-bearing syenite from the Shapinggou porphyry Mo deposit, East Qinling-Dabie orogenic belt. Solid Earth Sciences, 2016, 1, 101-117.	1.7	8
31	Partial melting of subducted paleo-Pacific plate during the early Cretaceous: Constraint from adakitic rocks in the Shaxi porphyry Cu–Au deposit, Lower Yangtze River Belt. Lithos, 2016, 262, 651-667.	1.4	78
32	Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes. Lithos, 2015, 230, 166-179.	1.4	37
33	Petrology, geochemistry, and tectonic significance of Mesozoic shoshonitic volcanic rocks, Luzong volcanic basin, eastern China. International Geology Review, 2012, 54, 714-736.	2.1	53