In Sun Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/297888/publications.pdf

Version: 2024-02-01

		47006	56724
138	7,514	47	83
papers	citations	h-index	g-index
148	148	148	10168
140	140	140	10100
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-Ta P2O11 (xÂ=Â0, 0.5, 1.0, 1.5, and 2.0) compounds. Journal of Materials Science and Technology, 2022, 98, 26-32.	10.7	4
2	Dual textured BiVO4/Sb:SnO2 heterostructure for enhanced photoelectrochemical Water-splitting. Chemical Engineering Journal, 2022, 435, 135183.	12.7	13
3	Sharp-edged nanoflakes array of CuO with enhanced optical and charge transport properties for Bias-Free tandem solar Water-splitting. Applied Surface Science, 2022, 585, 152632.	6.1	11
4	Point-defect engineering of nanoporous CuBi2O4 photocathode via rapid thermal processing for enhanced photoelectrochemical activity. Journal of Energy Chemistry, 2022, 71, 201-209.	12.9	18
5	Sintering behavior and dielectric properties of A3(PO4)2 compounds (A = Ca, Sr, Ba, Mg, Zn, Ni, Cu). Materials Science in Semiconductor Processing, 2022, 148, 106793.	4.0	8
6	Effects of cobalt oxide catalyst on pyrolysis of polyester fiber. Korean Journal of Chemical Engineering, 2022, 39, 3343-3349.	2.7	15
7	Using a CeO2 quantum dot hole extraction-layer for enhanced solar water splitting activity of BiVO4 photoanodes. Chemical Engineering Journal, 2022, 450, 137917.	12.7	20
8	High-performance bulky crystalline copper bismuthate photocathode for enhanced solar water splitting. Nano Energy, 2021, 80, 105568.	16.0	20
9	Facile fabrication of nanotubular heterostructure for enhanced photoelectrochemical performance. Ceramics International, 2021, 47, 3972-3977.	4.8	17
10	Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH. Journal of Materials Chemistry A, 2021, 9, 16841-16851.	10.3	37
11	Thermal Evaporation Synthesis of Vertically Aligned Zn2SnO4/ZnO Radial Heterostructured Nanowires Array. Nanomaterials, 2021, 11, 1500.	4.1	4
12	Solution synthesis and activation of spinel CuAl2O4 film for solar water-splitting. Journal of Catalysis, 2021, 400, 218-227.	6.2	16
13	Structural, optical, and electrical properties of tin iodide-based vacancy-ordered-double perovskites synthesized via mechanochemical reaction. Ceramics International, 2021, , .	4.8	2
14	Enhancing Solar Water Splitting of Textured BiVO4 by Dual Effect of a Plasmonic Silver Nanoshell: Plasmon-Induced Light Absorption and Enhanced Hole Transport. ACS Applied Energy Materials, 2020, 3, 11886-11892.	5.1	6
15	Bismuth vanadate photoanode synthesized by electron-beam evaporation of a single precursor source for enhanced solar water-splitting. Applied Surface Science, 2020, 528, 146906.	6.1	11
16	Copper phosphate compounds with visibleâ€toâ€nearâ€infraredâ€active photoâ€fentonâ€like photocatalytic properties. Journal of the American Ceramic Society, 2020, 103, 5120-5128.	3.8	17
17	(0 2 0)-Textured tungsten trioxide nanostructure with enhanced photoelectrochemical activity. Journal of Catalysis, 2020, 389, 328-336.	6.2	27
18	ZrO2 Nanoparticle Embedded Low Silver Lead Free Solder Alloy for Modern Electronic Devices. Electronic Materials Letters, 2019, 15, 27-35.	2.2	21

#	Article	IF	CITATIONS
19	Solution-processed TiO2/BiVO4/SnO2 triple-layer photoanode with enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2019, 785, 1245-1252.	5.5	27
20	Niobium incorporated WO3 nanotriangles: Band edge insights and improved photoelectrochemical water splitting activity. Ceramics International, 2019, 45, 8157-8165.	4.8	22
21	Optical Properties, Electronic Structures, and Photocatalytic Performances of Bandgap-Tailored SrBi2Nb2â^xVxO9 Compounds. Catalysts, 2019, 9, 393.	3.5	6
22	A Zn:BiVO ₄ /Mo:BiVO ₄ homojunction as an efficient photoanode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 9019-9024.	10.3	86
23	Rapid Flame-Annealed CuFe ₂ O ₄ as Efficient Photocathode for Photoelectrochemical Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 5867-5874.	6.7	65
24	Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy and Environmental Science, 2019, 12, 958-964.	30.8	116
25	Effect of oxygen vacancies on the band edge properties of WO3 producing enhanced photocurrents. Electrochimica Acta, 2019, 296, 517-527.	5.2	66
26	Improving p-to-n transition and detection range of bimodal hydrogen-sensitive nanohybrids of hole-doped rGO and chemochromic Pd-decorated-MoO3 nanoflakes. Journal of Alloys and Compounds, 2019, 774, 111-121.	5.5	15
27	Effects of Mg and Sr co-addition on the densification and biocompatible properties of calcium pyrophosphate. Ceramics International, 2018, 44, 9689-9695.	4.8	11
28	Boosting the solar water oxidation performance of a BiVO ₄ photoanode by crystallographic orientation control. Energy and Environmental Science, 2018, 11, 1299-1306.	30.8	330
29	Photophysical properties and photoelectrochemical performances of sol-gel derived copper stannate (CuSnO3) amorphous semiconductor for solar water splitting application. Ceramics International, 2018, 44, 1843-1849.	4.8	13
30	Rapid photocatalytic reduction of graphene oxide indirectly activated by the domino effect of ethanol oxidation on a titanium dioxide film. Materials Chemistry and Physics, 2018, 218, 289-295.	4.0	5
31	Facile and controllable surface-functionalization of TiO2 nanotubes array for highly-efficient photoelectrochemical water-oxidation. Journal of Catalysis, 2018, 365, 138-144.	6.2	21
32	Photochemical tuning of ultrathin TiO2/p-Si p-n junction properties via UV-induced H doping. Electronic Materials Letters, 2017, 13, 107-113.	2.2	5
33	Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices. ACS Nano, 2017, 11, 6853-6859.	14.6	7
34	Optical properties and visible light-induced photocatalytic activity of bismuth sillenites (Bi12XO20, X =) Tj ETQq(0.0 rgBT 4.8	/Oyerlock 10
35	Facile one-pot synthesis of self-assembled quantum-rod TiO2 spheres with enhanced charge transport properties for dye-sensitized solar cells and solar water-splitting. Journal of Alloys and Compounds, 2017, 697, 222-230.	5.5	6
36	BiVO ₄ /WO ₃ /SnO ₂ Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell. ACS Applied Materials & Solar Cell. ACS Ap	8.0	158

#	Article	IF	CITATIONS
37	Position-selective metal oxide nano-structures using graphene catalyst for gas sensors. Carbon, 2017, 125, 221-226.	10.3	8
38	Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells: Effects and limitations. Korean Journal of Chemical Engineering, 2017, 34, 3200-3207.	2.7	9
39	Nanodome Structured BiVO ₄ /GaO <i>_x</i> N _{1â^'} <i>_x</i> Photoanode for Solar Water Oxidation. Advanced Materials Interfaces, 2017, 4, 1700323.	3.7	25
40	Enhancing Lowâ€Bias Performance of Hematite Photoanodes for Solar Water Splitting by Simultaneous Reduction of Bulk, Interface, and Surface Recombination Pathways. Advanced Energy Materials, 2016, 6, 1501840.	19.5	152
41	Epitaxial Anatase TiO2Nanorods Array with Reduced Interfacial Charge Recombination for Solar Water Splitting. Journal of the Electrochemical Society, 2016, 163, H469-H473.	2.9	7
42	Fine tuning of emission property of white light-emitting diodes by quantum-dot-coating on YAG:Ce nanophosphors. Applied Surface Science, 2016, 379, 467-473.	6.1	22
43	High-Performance Ultrathin BiVO ₄ Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Letters, 2016, 1, 68-75.	17.4	66
44	One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation. ACS Energy Letters, 2016, 1 , 624-632.	17.4	122
45	Growth of ZnO thin film on graphene transferred Si (100) substrate. Thin Solid Films, 2016, 619, 68-72.	1.8	12
46	Glass-frit size dependence of densification behavior and mechanical properties of zinc aluminum calcium borosilicate glass-ceramics. Journal of Alloys and Compounds, 2016, 686, 95-100.	5 . 5	5
47	Wet-chemical preparation of barium magnesium orthophosphate, Ba2Mg(PO4)2:Eu2+, nanorod phosphor with enhanced optical and photoluminescence properties. RSC Advances, 2016, 6, 61378-61385.	3.6	11
48	Indium–Tin–Oxide Nanowire Array Based CdSe/CdS/TiO ₂ One-Dimensional Heterojunction Photoelectrode for Enhanced Solar Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 1161-1168.	6.7	33
49	Facile Preparation of TiO ₂ Nanobranch/Nanoparticle Hybrid Architecture with Enhanced Light Harvesting Properties for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	4
50	Facile transfer fabrication of transparent, conductive and flexible In2O3:Sn (ITO) nanowire arrays electrode via selective wet-etching ZnO sacrificial layer. Materials Letters, 2015, 158, 304-308.	2.6	8
51	A tree-like nanoporous WO ₃ photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2015, 3, 12920-12926.	10.3	60
52	Direct Low-Temperature Growth of Single-Crystalline Anatase TiO ₂ Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells. ACS Applied Materials & Diterfaces, 2015, 7, 10324-10330.	8.0	12
53	Enhanced Photocatalytic Activity of Ultrathin Ba ₅ Nb ₄ O ₁₅ Two-Dimensional Nanosheets. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21860-21867.	8.0	56
54	Facile synthesis and electroactivity of 3-D hierarchically superstructured cobalt orthophosphate for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 652, 100-105.	5 . 5	13

#	Article	IF	CITATIONS
55	Highly Efficient Solar Water Splitting from Transferred TiO ₂ Nanotube Arrays. Nano Letters, 2015, 15, 5709-5715.	9.1	95
56	Reduced Graphene Oxide/Mesoporous TiO ₂ Nanocomposite Based Perovskite Solar Cells. ACS Applied Materials & District Solar Cells.	8.0	180
57	Epitaxial 1D electron transport layers for high-performance perovskite solar cells. Nanoscale, 2015, 7, 15284-15290.	5.6	49
58	CdS-sensitized 1-D single-crystalline anatase TiO2 nanowire arrays for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 863-869.	7.1	18
59	Anionic Ligand Assisted Synthesis of 3-D Hollow TiO ₂ Architecture with Enhanced Photoelectrochemical Performance. Langmuir, 2014, 30, 15531-15539.	3.5	10
60	Growth of anatase and rutile TiO2@Sb:SnO2 heterostructures and their application in photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2014, 39, 17508-17516.	7.1	13
61	Simultaneously Efficient Light Absorption and Charge Separation in WO ₃ /BiVO ₄ Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation. Nano Letters, 2014, 14, 1099-1105.	9.1	652
62	Sol-flame synthesis of cobalt-doped TiO ₂ nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 12299-12306.	2.8	44
63	Transparent-conducting-oxide nanowire arrays for efficient photoelectrochemical energy conversion. Nanoscale, 2014, 6, 8649.	5.6	7
64	Rapid and Controllable Flame Reduction of TiO ₂ Nanowires for Enhanced Solar Water-Splitting. Nano Letters, 2014, 14, 24-31.	9.1	180
65	Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting. Jom, 2014, 66, 664-669.	1.9	16
66	Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations. Energy and Environmental Science, 2014, 7, 3100-3121.	30.8	118
67	Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. International Journal of Hydrogen Energy, 2014, 39, 17501-17507.	7.1	52
68	Sol-flame synthesis of hybrid metal oxide nanowires. Proceedings of the Combustion Institute, 2013, 34, 2179-2186.	3.9	15
69	Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting. Proceedings of the Combustion Institute, 2013, 34, 2187-2195.	3.9	83
70	Morphological control of heterostructured nanowires synthesized by sol-flame method. Nanoscale Research Letters, 2013, 8, 347.	5.7	6
71	Controlled synthesis and Li-electroactivity of rutile TiO2 nanostructure with walnut-like morphology. Dalton Transactions, 2013, 42, 4278.	3.3	8
72	Improved Quantum Efficiency of Highly Efficient Perovskite BaSnO ₃ -Based Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 1027-1035.	14.6	150

#	Article	IF	CITATIONS
73	Sol-Flame Synthesis: A General Strategy To Decorate Nanowires with Metal Oxide/Noble Metal Nanoparticles. Nano Letters, 2013, 13, 855-860.	9.1	48
74	BaSnO ₃ Perovskite Nanoparticles for High Efficiency Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 449-454.	6.8	78
75	Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nature Communications, 2013, 4, 1723.	12.8	249
76	RbBaPO ₄ :Eu ²⁺ : a new alternative blue-emitting phosphor for UV-based white light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 500-505.	5.5	96
77	Reducing minimum flash ignition energy of Al microparticles by addition of WO3 nanoparticles. Applied Physics Letters, 2013, 102, .	3.3	20
78	Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-film Electronics. Scientific Reports, 2013, 3, 2917.	3.3	59
79	Surface Modified TiO2 Nanostructure with 3D Urchin-Like Morphology for Dye-Sensitized Solar Cell Application. Journal of Nanoscience and Nanotechnology, 2012, 12, 1305-1309.	0.9	4
80	Hydrothermal synthesis and electrochemical properties of FeNbO ₄ nanospheres. Journal of the Ceramic Society of Japan, 2012, 120, 82-85.	1.1	12
81	Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates. Scientific Reports, 2012, 2, 1000.	3.3	66
82	Shrinking and Growing: Grain Boundary Density Reduction for Efficient Polysilicon Thin-Film Solar Cells. Nano Letters, 2012, 12, 6485-6491.	9.1	24
83	Simple synthesis and characterization of SrSnO3 nanoparticles with enhanced photocatalytic activity. International Journal of Hydrogen Energy, 2012, 37, 10557-10563.	7.1	79
84	Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (MÂ=ÂNb, Ta). International Journal of Hydrogen Energy, 2012, 37, 16895-16902.	7.1	28
85	Luminescent properties of phosphor converted LED using an orange-emitting Rb2CaP2O7:Eu2+ phosphor. Materials Research Bulletin, 2012, 47, 4522-4526.	5.2	20
86	Synthesis and photovoltaic property of fine and uniform Zn ₂ SnO ₄ nanoparticles. Nanoscale, 2012, 4, 557-562.	5.6	71
87	Fabrication of TiO2/Tin-Doped Indium Oxide-Based Photoelectrode Coated with Overlayer Materials and Its Photoelectrochemical Behavior. Journal of Nanoscience and Nanotechnology, 2012, 12, 1390-1394.	0.9	4
88	Photophysical and Photocatalytic Properties of <scp><scp>Zn</scp>₃<scp>M</scp>₂<scp>O</scp>₈</scp> (MÂ=Â <scp><scp>Nb</scp></scp> , <scp><scp>Ta</scp></scp>). Journal of the American Ceramic Society, 2012, 95, 227-231.	3.8	17
89	Enhanced photoluminescence property of Dy3+ co-doped BaAl2O4:Eu2+ green phosphors. Ceramics International, 2012, 38, 443-447.	4.8	40
90	Facile hydrothermal synthesis of InVO4 microspheres and their visible-light photocatalytic activities. Materials Letters, 2012, 72, 98-100.	2.6	14

#	Article	IF	CITATIONS
91	Investigation of crystal/electronic structure effects on the photoluminescence properties in the BaOâ€"SiO2:Eu2+ systems. Journal of Luminescence, 2012, 132, 375-380.	3.1	15
92	Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization. Nano Letters, 2011, 11, 2704-2708.	9.1	151
93	Branched TiO ₂ Nanorods for Photoelectrochemical Hydrogen Production. Nano Letters, 2011, 11, 4978-4984.	9.1	843
94	Wolframite-type ZnWO ₄ Nanorods as New Anodes for Li-lon Batteries. Journal of Physical Chemistry C, 2011, 115, 16228-16233.	3.1	74
95	A novel blue-emitting NaSrPO4:Eu2+ phosphor for near UV based white light-emitting-diodes. Materials Letters, 2011, 65, 1666-1668.	2.6	34
96	Electronic Band Structure, Optical Properties, and Photocatalytic Hydrogen Production of Barium Niobium Phosphate Compounds (BaO–Nb ₂ O ₅ –P ₂ O ₅). European Journal of Inorganic Chemistry, 2011, 2011, 2206-2210.	2.0	7
97	Preparation and photoluminescence properties of \hat{I}^3 -KCaPO4: Eu2+ phosphors for near UV-based white LEDs. Optical Materials, 2011, 33, 1036-1040.	3.6	41
98	Electronic band structures and photovoltaic properties of MWO4 (M=Zn, Mg, Ca, Sr) compounds. Journal of Solid State Chemistry, 2011, 184, 2103-2107.	2.9	68
99	Synthesis and Characteristics of Tb-Doped Y ₂ SiO ₅ Nanophosphors and Luminescent Layer for Enhanced Photovoltaic Cell Performance. Journal of Nanoscience and Nanotechnology, 2011, 11, 8748-8753.	0.9	13
100	Synthesis and photoactivity of hetero-nanostructured SrTiO3. Journal of the Ceramic Society of Japan, 2010, 118, 876-880.	1.1	15
101	Li electroactivity of iron (II) tungstate nanorods. Nanotechnology, 2010, 21, 465602.	2.6	30
102	Synthesis of Heterogeneous Li4Ti5O12 Nanostructured Anodes with Long-Term Cycle Stability. Nanoscale Research Letters, 2010, 5, 1585-1589.	5.7	36
103	Effects of carbon content on the photocatalytic activity of C/BiVO4 composites under visible light irradiation. Materials Chemistry and Physics, 2010, 119, 106-111.	4.0	54
104	Synthesis, characterization and photocatalytic properties of CaNb2O6 with ellipsoid-like plate morphology. Solid State Sciences, 2010, 12, 982-988.	3.2	22
105	Lowâ€Temperature Synthesis of Phaseâ€Pure 0D–1D BaTiO ₃ Nanostructures Using H ₂ Ti ₃ O ₇ Templates. European Journal of Inorganic Chemistry, 2010, 2010, 1343-1347.	2.0	13
106	Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 129-135.	3.9	65
107	Effects of crystal and electronic structures of ANb2O6 (A=Ca, Sr, Ba) metaniobate compounds on their photocatalytic H2 evolution from pure water. International Journal of Hydrogen Energy, 2010, 35, 12954-12960.	7.1	69
108	Correlation of anatase particle size with photocatalytic properties. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2288-2291.	1.8	17

#	Article	IF	CITATIONS
109	Enhancing the Densification of Nanocrystalline TiO ₂ by Reduction in Spark Plasma Sintering. Journal of the American Ceramic Society, 2010, 93, 993-997.	3.8	14
110	Photophysical and Photocatalytic Properties of Ag ₂ M ₂ O ₇ (M=Mo, W). Journal of the American Ceramic Society, 2010, 93, 3867-3872.	3.8	41
111	Preparation of N-Doped CaNb ₂ O ₆ Nanoplates with Ellipsoid-Like Morphology and Their Photocatalytic Activities Under Visible-Light Irradiation. Journal of Nanoscience and Nanotechnology, 2010, 10, 1196-1202.	0.9	6
112	Hydrothermal Synthesis, Characterization and Photocatalytic Properties of Cu ₂ PO ₄ OH with Hierarchical Morphologies. Journal of Nanoscience and Nanotechnology, 2010, 10, 1185-1190.	0.9	11
113	Facile hydrothermal synthesis of porous TiO ₂ nanowire electrodes with high-rate capability for Li ion batteries. Nanotechnology, 2010, 21, 255706.	2.6	68
114	Two-Step Solâ^'Gel Method-Based TiO ₂ Nanoparticles with Uniform Morphology and Size for Efficient Photo-Energy Conversion Devices. Chemistry of Materials, 2010, 22, 1958-1965.	6.7	166
115	Simple Large-Scale Synthesis of Hydroxyapatite Nanoparticles: In Situ Observation of Crystallization Process. Langmuir, 2010, 26, 384-388.	3.5	49
116	Facile Hydrothermal Synthesis of SrNb ₂ O ₆ Nanotubes with Rhombic Cross Sections. Crystal Growth and Design, 2010, 10, 2447-2450.	3.0	9
117	Synthesis and Characterization of Nano-Particulate BaTiO ₃ for Ceramic/Polymer Composite Capacitor. Journal of Nanoscience and Nanotechnology, 2010, 10, 1361-1366.	0.9	3
118	SrNb2O6 nanotubes with enhanced photocatalytic activity. Journal of Materials Chemistry, 2010, 20, 3979.	6.7	28
119	Tailoring the Morphology and Structure of Nanosized Zn ₂ SiO ₄ : Mn ²⁺ Phosphors Using the Hydrothermal Method and Their Luminescence Properties. Journal of Physical Chemistry C, 2010, 114, 10330-10335.	3.1	54
120	Al-Doped ZnO Thin Film: A New Transparent Conducting Layer for ZnO Nanowire-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 7185-7189.	3.1	134
121	Structure and dielectric properties of cubic Bi2(Zn1â^•3Ta2â^•3)2O7 thin films. Journal of Applied Physics, 2009, 106, .	2.5	0
122	Investigation of microwave dielectric properties in the BaO–Nb2O5–P2O5 system. Journal of Electroceramics, 2009, 23, 154-158.	2.0	7
123	Photoluminescence and electrical properties of epitaxial Alâ€doped ZnO transparent conducting thin films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2133-2138.	1.8	14
124	Preparation, Characterization, and Photocatalytic Properties of CaNb ₂ O ₆ Nanoparticles. Journal of the American Ceramic Society, 2009, 92, 506-510.	3.8	28
125	Sintering, microstructure and microwave dielectric properties of rare earth orthophosphates, RePO4 (Re=La, Ce, Nd, Sm, Tb, Dy, Y, Yb). Materials Research Bulletin, 2009, 44, 173-178.	5.2	74
126	Indiumâ^'Tinâ^'Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 7443-7447.	3.1	35

#	Article	IF	CITATION
127	Functional Multilayered Transparent Conducting Oxide Thin Films for Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 1083-1087.	3.1	60
128	Photophysical, Photoelectrochemical, and Photocatalytic Properties of Novel SnWO ₄ Oxide Semiconductors with Narrow Band Gaps. Journal of Physical Chemistry C, 2009, 113, 10647-10653.	3.1	136
129	Synthesis of Cu ₂ PO ₄ OH Hierarchical Superstructures with Photocatalytic Activity in Visible Light. Advanced Functional Materials, 2008, 18, 2154-2162.	14.9	141
130	Lowâ€Temperature Hydrothermal Synthesis of Pure BiFeO ₃ Nanopowders Using Triethanolamine and Their Applications as Visibleâ€Light Photocatalysts. Journal of the American Ceramic Society, 2008, 91, 3753-3755.	3.8	112
131	Visible-Light-Induced Photocatalytic Activity in FeNbO ₄ Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 18393-18398.	3.1	45
132	Effects of CuO and V ₂ O ₅ Addition on Sintering Behavior and Microwave Dielectric Properties of (1-x)Ca ₂ P ₂ O _{7-x} TiO ₂ . Key Engineering Materials, 2007, 336-338, 279-282.	0.4	0
133	Sintering Behavior and Microwave Dielectric Properties of Tricalcium Phosphate Polymorphs. Japanese Journal of Applied Physics, 2007, 46, 2999-3003.	1.5	19
134	Microwave dielectric properties and Far-infrared spectroscopic analysis of Ba5+nTinNb4O15+3n (0.3 <n<1.2) 2007,="" 27,="" 3081-3086.<="" ceramic="" ceramics.="" european="" journal="" of="" society,="" td="" the=""><td>5.7</td><td>14</td></n<1.2)>	5.7	14
135	Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO–B2O3 glass additions for LTCC applications. Journal of the European Ceramic Society, 2007, 27, 3075-3079.	5.7	26
136	Mixture behavior and microwave dielectric properties of (1â^'x)Ca2P2O7â€"xTiO2. Journal of the European Ceramic Society, 2006, 26, 2007-2010.	5.7	25
137	Phase transformation and microwave dielectric properties of BiPO4 ceramics. Journal of Electroceramics, 2006, 16, 379-383.	2.0	51
138	Low-temperature sintering and microwave dielectric properties of BaO·(Nd1â-'xBix)2O3·4TiO2 by the glass additions. Ceramics International, 2004, 30, 1181-1185.	4.8	61