Stephanie Zaleski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2978861/publications.pdf

Version: 2024-02-01

933447 1058476 15 966 10 14 citations g-index h-index papers 15 15 15 1805 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 7583-7613.	47.7	519
2	Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Accounts of Chemical Research, 2016, 49, 2023-2030.	15.6	101
3	Tip-Enhanced Raman Spectroscopy (TERS) for <i>in Situ</i> i> Identification of Indigo and Iron Gall Ink on Paper. Journal of the American Chemical Society, 2014, 136, 8677-8684.	13.7	81
4	Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 24982-24991.	3.1	52
5	Observing Single, Heterogeneous, One-Electron Transfer Reactions. Journal of Physical Chemistry C, 2015, 119, 28226-28234.	3.1	42
6	An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Analytical and Bioanalytical Chemistry, 2011, 399, 2997-3010.	3.7	41
7	SERS Discrimination of Closely Related Molecules: A Systematic Study of Natural Red Dyes in Binary Mixtures. Journal of Physical Chemistry C, 2016, 120, 21017-21026.	3.1	41
8	Identification and Quantification of Intravenous Therapy Drugs Using Normal Raman Spectroscopy and Electrochemical Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2017, 89, 2497-2504.	6. 5	30
9	Natural and synthetic arsenic sulfide pigments in Japanese woodblock prints of the late Edo period. Heritage Science, 2018, 6, .	2.3	18
10	Single Molecule Electrochemistry: Impact of Surface Site Heterogeneity. Journal of Physical Chemistry C, 2016, 120, 27241-27249.	3.1	13
11	Surface-Enhanced Raman Spectroscopy: Using Nanoparticles to Detect Trace Amounts of Colorants in Works of Art., 2016,, 161-204.		11
12	Application of fiber optic reflectance spectroscopy for the detection of historical glass deterioration. Journal of the American Ceramic Society, 2020, 103, 158-166.	3.8	8
13	Use of Microscopy and Microanalysis in Assessing Kinetics of Degradation in 19th-century Heritage Glasses. Microscopy and Microanalysis, 2018, 24, 2138-2139.	0.4	3
14	Nineteenth century glass manufacture and its effect on photographic glass stability. Journal of the Institute of Conservation, 2020, 43, 125-141.	0.6	3
15	Glass at risk: A new approach for the study of 19th century vessel glass. Journal of Cultural Heritage, 2022, 54, 155-166.	3.3	3