
Eberhard Morgenroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2977809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance and dynamics of active greywater heat recovery in buildings. Applied Energy, 2022, 305, 117677.	10.1	8
2	Cross flow frequency determines the physical structure and cohesion of membrane biofilms developed during gravity-driven membrane ultrafiltration of river water: Implication for hydraulic resistance. Journal of Membrane Science, 2022, 643, 120079.	8.2	9
3	Low maintenance gravity-driven membrane filtration using hollow fibers: Effect of reducing space for biofilm growth and control strategies on permeate flux. Science of the Total Environment, 2022, 811, 152307.	8.0	11
4	Microbial conversion pathways of particulate organic substrate conversion in aerobic granular sludge systems: limited anaerobic conversion and the essential role of flocs. Environmental Science: Water Research and Technology, 2022, 8, 1236-1251.	2.4	2
5	Tracing N2O formation in full-scale wastewater treatment with natural abundance isotopes indicates control by organic substrate and process settings. Water Research X, 2022, 15, 100130.	6.1	12
6	How to get your feet wet: Integrating urban water and building engineering for low-energy domestic hot water systems. Energy and Buildings, 2022, 271, 112318.	6.7	3
7	Socio-technical analysis of a sanitation innovation in a peri-urban household in Durban, South Africa. Science of the Total Environment, 2021, 755, 143284.	8.0	13
8	Make your research more accessible. Water Research, 2021, 188, 116453.	11.3	0
9	Disruptions in loading and aeration impact effluent chlorine demand during biological greywater recycling. Water Research X, 2021, 11, 100087.	6.1	3
10	Predictive models using "cheap and easy―field measurements: Can they fill a gap in planning, monitoring, and implementing fecal sludge management solutions?. Water Research, 2021, 196, 116997.	11.3	13
11	Integrating granular activated carbon (GAC) to gravity-driven membrane (GDM) to improve its flux stabilization: Respective roles of adsorption and biodegradation by GAC. Science of the Total Environment, 2021, 768, 144758.	8.0	22
12	Making Waves: Why water reuse frameworks need to co-evolve with emerging small-scale technologies. Water Research X, 2021, 11, 100094.	6.1	15
13	Linking seasonal N2O emissions and nitrification failures to microbial dynamics in a SBR wastewater treatment plant. Water Research X, 2021, 11, 100098.	6.1	26
14	Transformation of TiO2 (nano)particles during sewage sludge incineration. Journal of Hazardous Materials, 2021, 411, 124932.	12.4	5
15	The value of human data annotation for machine learning based anomaly detection in environmental systems. Water Research, 2021, 206, 117695.	11.3	14
16	Estimation of countrywide N2O emissions from wastewater treatment in Switzerland using long-term monitoring data. Water Research X, 2021, 13, 100122.	6.1	28
17	Robustness of mainstream anammox activity at bench and pilot scale. Science of the Total Environment, 2021, 796, 148920.	8.0	13
18	Innovation for improved hand hygiene: Field testing the Autarky handwashing station in collaboration with informal settlement residents in Durban, South Africa. Science of the Total Environment, 2021, 796, 149024	8.0	4

#	Article	IF	CITATIONS
19	Stagnation leads to short-term fluctuations in the effluent water quality of biofilters: A problem for greywater reuse?. Water Research X, 2021, 13, 100120.	6.1	12
20	Biological activated carbon filter for greywater post-treatment: Long-term TOC removal with adsorption and biodegradation. Water Research X, 2021, 13, 100113.	6.1	10
21	Release of gold (Au), silver (Ag) and cerium dioxide (CeO2) nanoparticles from sewage sludge incineration ash. Environmental Science: Nano, 2021, 8, 3220-3232.	4.3	4
22	On-site urine treatment combining Ca(OH)2 dissolution and dehydration with ambient air. Water Research X, 2021, 13, 100124.	6.1	8
23	Modelling hydrolysis: Simultaneous versus sequential biodegradation of the hydrolysable fractions. Waste Management, 2020, 101, 150-160.	7.4	13
24	Influence of intermittent flow on removal of organics in a biological activated carbon filter (BAC) used as post-treatment for greywater. Water Research X, 2020, 9, 100078.	6.1	6
25	Particulate substrate retention in plug-flow and fully-mixed conditions during operation of aerobic granular sludge systems. Water Research X, 2020, 9, 100075.	6.1	10
26	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	23.7	195
27	Competitive co-adsorption of bacteriophage MS2 and natural organic matter onto multiwalled carbon nanotubes. Water Research X, 2020, 9, 100058.	6.1	13
28	Linking transformations of organic carbon to post-treatment performance in a biological water recycling system. Science of the Total Environment, 2020, 721, 137489.	8.0	9
29	Acknowledging excellent reviewers and associate editors. Water Research X, 2020, 7, 100046.	6.1	0
30	A Research Agenda for the Future of Urban Water Management: Exploring the Potential of Nongrid, Small-Grid, and Hybrid Solutions. Environmental Science & Technology, 2020, 54, 5312-5322.	10.0	73
31	Modeling the water-energy nexus in households. Energy and Buildings, 2020, 225, 110262.	6.7	13
32	Limited simultaneous nitrification-denitrification (SND) in aerobic granular sludge systems treating municipal wastewater: Mechanisms and practical implications. Water Research X, 2020, 7, 100048.	6.1	77
33	Acknowledging excellent reviewers and associate editors. Water Research, 2020, 173, 115560.	11.3	0
34	Synchrotron hard X-ray chemical imaging of trace element speciation in heterogeneous samples: development of criteria for uncertainty analysis. Journal of Analytical Atomic Spectrometry, 2020, 35, 567-579.	3.0	6
35	Practical implementation of true on-site water recycling systems for hand washing and toilet flushing. Water Research X, 2020, 7, 100051.	6.1	14
36	Make your research more accessible. Water Research X, 2020, 9, 100082.	6.1	0

#	Article	IF	CITATIONS
37	Editorial note. Water Research, 2019, 162, 276.	11.3	0
38	Transformation of Nanoscale and Ionic Cu and Zn during the Incineration of Digested Sewage Sludge (Biosolids). Environmental Science & Technology, 2019, 53, 11704-11713.	10.0	19
39	Stabilizing control of a urine nitrification process in the presence of sensor drift. Water Research, 2019, 165, 114958.	11.3	9
40	Evaluation of conceptual model and predictors of faecal sludge dewatering performance in Senegal and Tanzania. Water Research, 2019, 167, 115101.	11.3	35
41	Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes. Water Research, 2019, 154, 104-116.	11.3	191
42	Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system. Water Research X, 2019, 2, 100020.	6.1	19
43	Organic substrate diffusibility governs microbial community composition, nutrient removal performance and kinetics of granulation of aerobic granular sludge. Water Research X, 2019, 4, 100033.	6.1	85
44	Source Community and Assembly Processes Affect the Efficiency of Microbial Microcystin Degradation on Drinking Water Filtration Membranes. Frontiers in Microbiology, 2019, 10, 843.	3.5	4
45	Biofilm compressibility in ultrafiltration: A relation between biofilm morphology, mechanics and hydraulic resistance. Water Research, 2019, 157, 335-345.	11.3	30
46	Gravity-driven membrane filtration for water and wastewater treatment: A review. Water Research, 2019, 149, 553-565.	11.3	306
47	The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems. , 2019, , .		2
48	Pore‣cale Hydrodynamics in a Progressively Bioclogged Threeâ€Dimensional Porous Medium: 3â€D Particle Tracking Experiments and Stochastic Transport Modeling. Water Resources Research, 2018, 54, 2183-2198.	4.2	34
49	Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development. Water Research, 2018, 134, 280-291.	11.3	71
50	A framework for good biofilm reactor modeling practice (GBRMP). Water Science and Technology, 2018, 77, 1149-1164.	2.5	32
51	Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research, 2018, 132, 211-221.	11.3	161
52	Stratification in the physical structure and cohesion of membrane biofilms — Implications for hydraulic resistance. Journal of Membrane Science, 2018, 564, 897-904.	8.2	33
53	Chemical composition, nutrient-balancing and biological treatment of hand washing greywater. Water Research, 2018, 144, 752-762.	11.3	33
54	Physical structure determines compression of membrane biofilms during Gravity Driven Membrane (GDM) ultrafiltration. Water Research, 2018, 143, 539-549.	11.3	35

#	Article	IF	CITATIONS
55	Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: A numerical and experimental study. Water Research, 2018, 145, 375-387.	11.3	41
56	Combustion of Sewage Sludge: Kinetics and Speciation of the Combustible. Energy & Fuels, 2018, 32, 10656-10667.	5.1	10
57	Early testing of new sanitation technology for urban slums: The case of the Blue Diversion Toilet. Science of the Total Environment, 2017, 576, 264-272.	8.0	33
58	From biofilm ecology to reactors: a focused review. Water Science and Technology, 2017, 75, 1753-1760.	2.5	79
59	Biofilm carrier migration model describes reactor performance. Water Science and Technology, 2017, 75, 2818-2828.	2.5	10
60	Modeling hydraulic transport and anaerobic uptake by PAOs and GAOs during wastewater feeding in EBPR granular sludge reactors. Biotechnology and Bioengineering, 2017, 114, 1688-1702.	3.3	23
61	Growth of <i>Nitrosococcus</i> -Related Ammonia Oxidizing Bacteria Coincides with Extremely Low pH Values in Wastewater with High Ammonia Content. Environmental Science & Technology, 2017, 51, 6857-6866.	10.0	64
62	Modeling in-sewer transformations at catchment scale – implications on drug consumption estimates in wastewater-based epidemiology. Water Research, 2017, 122, 655-668.	11.3	58
63	Comparing the Resistance, Resilience, and Stability of Replicate Moving Bed Biofilm and Suspended Growth Combined Nitritation–Anammox Reactors. Environmental Science & Technology, 2017, 51, 5108-5117.	10.0	82
64	Removal rates and energy demand of the electrochemical oxidation of ammonia and organic substances in real stored urine. Environmental Science: Water Research and Technology, 2017, 3, 480-491.	2.4	34
65	Robust planning of sanitation services in urban informal settlements: An analytical framework. Water Research, 2017, 110, 297-312.	11.3	16
66	Emerging outcomes from a cross-disciplinary doctoral programme on water resource systems. Water Policy, 2017, 19, 463-478.	1.5	7
67	Controlling Bacterial Pathogens in Water for Reuse: Treatment Technologies for Water Recirculation in the Blue Diversion Autarky Toilet. Frontiers in Environmental Science, 2017, 5, 90.	3.3	18
68	Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools. PLoS ONE, 2017, 12, e0180374.	2.5	40
69	Microbial activity balance in size fractionated suspended growth biomass from full-scale sidestream combined nitritation-anammox reactors. Bioresource Technology, 2016, 218, 38-45.	9.6	63
70	Influence of Different Sewer Biofilms on Transformation Rates of Drugs. Environmental Science & Technology, 2016, 50, 13351-13360.	10.0	58
71	Degradation of the unbiodegradable particulate fraction (XU) from different activated sludges during batch digestion tests at ambient temperature. Water Research, 2016, 98, 206-214.	11.3	5
72	Effect of short term external perturbations on bacterial ecology and activities in a partial nitritation and anammox reactor. Bioresource Technology, 2016, 219, 527-535.	9.6	48

#	Article	IF	CITATIONS
73	Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Water Research, 2016, 105, 341-350.	11.3	133
74	Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Science and Technology, 2016, 73, 215-222.	2.5	92
75	The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance. Water Research, 2016, 102, 63-72.	11.3	60
76	Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Research, 2016, 101, 628-639.	11.3	420
77	Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. Environmental Science & Technology, 2016, 50, 1779-1787.	10.0	66
78	Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water. Journal of Membrane Science, 2016, 510, 382-390.	8.2	100
79	Locally produced natural conditioners for dewatering of faecal sludge. Environmental Technology (United Kingdom), 2016, 37, 2802-2814.	2.2	29
80	Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environmental Science: Nano, 2016, 3, 203-212.	4.3	59
81	An energy-efficient membrane bioreactor for on-site treatment and recovery of wastewater. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 448-455.	1.8	26
82	Blue Diversion: a new approach to sanitation in informal settlements. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 64-71.	1.8	23
83	Considering microbial and aggregate heterogeneity in biofilm reactor models: how far do we need to go?. Water Science and Technology, 2015, 72, 1692-1699.	2.5	7
84	On-site treatment of used wash-water using biologically activated membrane bioreactors operated at different solids retention times. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 544-552.	1.8	9
85	Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater. Water Research, 2015, 80, 325-336.	11.3	195
86	Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine. Water Research, 2015, 69, 284-294.	11.3	90
87	Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. Water Research, 2015, 83, 161-170.	11.3	56
88	Role of Biofilm Roughness and Hydrodynamic Conditions in <i>Legionella pneumophila</i> Adhesion to and Detachment from Simulated Drinking Water Biofilms. Environmental Science & Technology, 2015, 49, 4274-4282.	10.0	91
89	Inhibition of Direct Electrolytic Ammonia Oxidation Due to a Change in Local pH. Electrochimica Acta, 2015, 165, 348-355.	5.2	42
90	Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors. Water Research, 2015, 85, 158-166.	11.3	93

#	Article	IF	CITATIONS
91	Observability of anammox activity in single-stage nitritation/anammox reactors using mass balances. Environmental Science: Water Research and Technology, 2015, 1, 523-534.	2.4	5
92	Bacterial growth in batch-operated membrane filtration systems for drinking water treatment. Separation and Purification Technology, 2015, 156, 165-174.	7.9	10
93	Formation of Chlorination Byproducts and Their Emission Pathways in Chlorine Mediated Electro-Oxidation of Urine on Active and Nonactive Type Anodes. Environmental Science & Technology, 2015, 49, 11062-11069.	10.0	76
94	Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent. Environmental Science & Technology, 2015, 49, 10911-10919.	10.0	38
95	Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration. Water Research, 2015, 85, 512-520.	11.3	64
96	The effect of different aeration conditions in activated sludge – Side-stream system on sludge production, sludge degradation rates, active biomass and extracellular polymeric substances. Water Research, 2015, 85, 46-56.	11.3	43
97	Impact of coexistence of flocs and biofilm on performance of combined nitritation-anammox granular sludge reactors. Water Research, 2015, 68, 127-139.	11.3	131
98	Resiliency of Anammox against External Stress Factors – Effects of Temperature and Wastewater Constituents. Proceedings of the Water Environment Federation, 2015, 2015, 1986-1993.	0.0	0
99	An interactive framework of process engineering and systems microbiology toward improved performance of aerobic-anaerobic ammonium oxidation for energy-efficient nitrogen removal from wastewater. Proceedings of the Water Environment Federation, 2015, 2015, 1-8.	0.0	0
100	How far can genetic signatures be used to anticipate and trigger the behavior of environmental biotechnology systems in the water engineering domain?. Proceedings of the Water Environment Federation, 2015, 2015, 6170-6170.	0.0	1
101	Biodegradation of Microcystins during Gravity-Driven Membrane (GDM) Ultrafiltration. PLoS ONE, 2014, 9, e111794.	2.5	35
102	Successful application of nitritation/anammox toÂwastewater with elevated organic carbon to ammonia ratios. Water Research, 2014, 49, 316-326.	11.3	250
103	Effect of fouling layer spatial distribution on permeate flux: A theoretical and experimental study. Journal of Membrane Science, 2014, 471, 130-137.	8.2	51
104	Inorganic particles increase biofilm heterogeneity and enhance permeate flux. Water Research, 2014, 64, 177-186.	11.3	51
105	Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration. Water Research, 2014, 60, 164-173.	11.3	89
106	Sulfidation Kinetics of Silver Nanoparticles Reacted with Metal Sulfides. Environmental Science & Technology, 2014, 48, 4885-4892.	10.0	93
107	Biofilm formation and permeate quality improvement in Gravity Driven Membrane ultrafiltration. Water Science and Technology: Water Supply, 2014, 14, 274-282.	2.1	20
108	Towards Community Systems Microbiology for the Optimization of Aerobic-Anaerobic Ammonium Oxidation Processes. Proceedings of the Water Environment Federation, 2014, 2014, 2645-2649.	0.0	0

#	Article	IF	CITATIONS
109	A consolidated approach of flocculent and granular sludge systems under the perspective of bacterial resource management. Proceedings of the Water Environment Federation, 2014, 2014, 5008-5009.	0.0	6
110	Two-Stage Acidic–Alkaline Hydrothermal Pretreatment of Lignocellulose for the High Recovery of Cellulose and Hemicellulose Sugars. Applied Biochemistry and Biotechnology, 2013, 169, 1069-1087.	2.9	31
111	Urban water management to increase sustainability of cities. Water Research, 2013, 47, 7149.	11.3	5
112	Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens. Bioresource Technology, 2013, 147, 89-95.	9.6	29
113	Exogenous anthrahydroquinone-2,6-disulfonate specifically increases xylose utilization during mixed sugar fermentation by Clostridium beijerinckii NCIMB 8052. International Journal of Hydrogen Energy, 2013, 38, 2719-2727.	7.1	8
114	Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration. Water Research, 2013, 47, 2085-2095.	11.3	136
115	Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. Water Research, 2013, 47, 2531-2542.	11.3	86
116	Interactions between <i>Clostridium beijerinckii</i> and <i>Geobacter metallireducens</i> in coâ€culture fermentation with anthrahydroquinoneâ€2, 6â€disulfonate (AH ₂ QDS) for enhanced biohydrogen production from xylose. Biotechnology and Bioengineering, 2013, 110, 164-172.	3.3	31
117	Rethinking wastewater characterisation methods for activated sludge systems – a position paper. Water Science and Technology, 2013, 67, 2363-2373.	2.5	21
118	Anaerobic biodegradation of methyl tert-butyl ether and tert-butyl alcohol in petrochemical wastewater. Environmental Technology (United Kingdom), 2012, 33, 1937-1943.	2.2	7
119	Anthrahydroquinone-2,6-disulfonate increases the rate of hydrogen production during Clostridium beijerinckii fermentation with glucose, xylose, and cellobiose. International Journal of Hydrogen Energy, 2012, 37, 11701-11709.	7.1	21
120	Method to identify potential phosphorus rate-limiting conditions in post-denitrification biofilm reactors within systems designed for simultaneous low-level effluent nitrogen and phosphorus concentrations. Water Research, 2012, 46, 6228-6238.	11.3	20
121	Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Research, 2012, 46, 3323-3333.	11.3	189
122	Backwash intensity and frequency impact the microbial community structure and function in a fixed-bed biofilm reactor. Applied Microbiology and Biotechnology, 2012, 96, 815-827.	3.6	15
123	Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresource Technology, 2012, 110, 278-287.	9.6	30
124	Combined Nitritation–Anammox: Advances in Understanding Process Stability. Environmental Science & Technology, 2011, 45, 9735-9742.	10.0	176
125	Anthrahydroquinone-2,6,-disulfonate (AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii. Applied Microbiology and Biotechnology, 2011, 92, 855-864.	3.6	27
126	Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor. Biotechnology and Bioengineering, 2011, 108, 296-305.	3.3	17

#	Article	IF	CITATIONS
127	Syntrophic acetate oxidation in two-phase (acid–methane) anaerobic digesters. Water Science and Technology, 2011, 64, 1812-1820.	2.5	55
128	Systematic evaluation of biofilm models for engineering practice: components and critical assumptions. Water Science and Technology, 2011, 64, 930-944.	2.5	45
129	Changes in the Structure and Function of Microbial Communities in Drinking Water Treatment Bioreactors upon Addition of Phosphorus. Applied and Environmental Microbiology, 2010, 76, 7473-7481.	3.1	60
130	Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Science and Technology, 2010, 62, 1821-1836.	2.5	50
131	Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering. Water Research, 2010, 44, 1995-2009.	11.3	71
132	The influence of aeration intensity on predation and EPS production in membrane bioreactors. Water Research, 2010, 44, 2541-2553.	11.3	60
133	Mechanisms of SMP production in membrane bioreactors: Choosing an appropriate mathematical model structure. Water Research, 2010, 44, 5240-5251.	11.3	31
134	Wastewater treatment models in teaching and training: the mismatch between education and requirements for jobs. Water Science and Technology, 2009, 59, 745-753.	2.5	18
135	Wastewater treatment models in teaching and training: the mismatch between education and requirements for jobs. Water Science and Technology, 2009, 60, 1721-1729.	2.5	2
136	Analyzing characteristic length scales in biofilm structures. Biotechnology and Bioengineering, 2009, 102, 368-379.	3.3	23
137	Biofilm monitoring on rotating discs by image analysis. Biotechnology and Bioengineering, 2009, 103, 105-116.	3.3	9
138	Biofilm engineering: linking biofilm development at different length and time scales. Reviews in Environmental Science and Biotechnology, 2009, 8, 203-208.	8.1	48
139	Influence of shear on the production of extracellular polymeric substances in membrane bioreactors. Water Research, 2009, 43, 4305-4315.	11.3	67
140	Textural fingerprints: A comprehensive descriptor for biofilm structure development. Biotechnology and Bioengineering, 2008, 100, 889-901.	3.3	17
141	Inhibitory effects of the macrolide antimicrobial tylosin on anaerobic treatment. Biotechnology and Bioengineering, 2008, 101, 73-82.	3.3	46
142	Practical identifiability of biokinetic parameters of a model describing twoâ€step nitrification in biofilms. Biotechnology and Bioengineering, 2008, 101, 497-514.	3.3	40
143	Chemisorption of oxygen onto activated carbon can enhance the stability of biological perchlorate reduction in fixed bed biofilm reactors. Water Research, 2008, 42, 3425-3434.	11.3	21
144	Modelling the effect of the antimicrobial tylosin on the performance of an anaerobic sequencing batch reactor. Water Science and Technology, 2008, 57, 1699-1704.	2.5	8

#	Article	IF	CITATIONS
145	Quantitative rRNA-Targeted Solution-Based Hybridization Assay Using Peptide Nucleic Acid Molecular Beacons. Applied and Environmental Microbiology, 2008, 74, 7297-7305.	3.1	6
146	EFFECTS OF THE VETERINARY ANTIMICROBIAL TYLOSIN ON ANAEROBIC DIGESTION. Proceedings of the Water Environment Federation, 2008, 2008, 7517-7523.	0.0	0
147	Comparing global sensitivity analysis for a biofilm model for two-step nitrification using the qualitative screening method of Morris or the quantitative variance-based Fourier Amplitude Sensitivity Test (FAST). Water Science and Technology, 2007, 56, 85-93.	2.5	20
148	Texture analysis of spatial biofilm development. Water Science and Technology, 2007, 55, 481-488.	2.5	4
149	Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Research, 2007, 41, 134-144.	11.3	150
150	Effect of backwashing on perchlorate removal in fixed bed biofilm reactors. Water Research, 2007, 41, 1949-1959.	11.3	22
151	Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm. Water Research, 2007, 41, 4657-4671.	11.3	90
152	Carbohydrate storage in anaerobic sequencing batch reactors. Water Research, 2007, 41, 4721-4729.	11.3	27
153	Estimation of kinetic parameters of a model for deammonification in biofilms and evaluation of the model. Water Science and Technology, 2007, 55, 291-299.	2.5	21
154	Influence of cleaning frequency and membrane history on fouling in an anaerobic membrane bioreactor. Desalination, 2007, 207, 153-166.	8.2	75
155	Influence of the Antibiotic Erythromycin on Anaerobic Treatment of a Pharmaceutical Wastewater. Environmental Science & Technology, 2006, 40, 3971-3977.	10.0	110
156	Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal. Water Research, 2006, 40, 1519-1530.	11.3	118
157	Effects of initial molecular weight on removal rate of dextran in biofilms. Water Research, 2006, 40, 1795-1804.	11.3	10
158	The influence of particle size on microbial hydrolysis of protein particles in activated sludge. Water Research, 2006, 40, 2064-2074.	11.3	65
159	Groundbreaking papers in Water Research 1967–2006. Water Research, 2006, 40, 3313-3314.	11.3	0
160	Modelling deammonification in biofilm systems: Sensitivity and identifiability analysis as a basis for the design of experiments for parameter estimation. Computer Aided Chemical Engineering, 2006, 21, 221-226.	0.5	5
161	Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chemical Engineering Science, 2006, 61, 1347-1356.	3.8	81
162	Modeling of chord length distributions. Chemical Engineering Science, 2006, 61, 3962-3973.	3.8	39

#	Article	IF	CITATIONS
163	Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. Journal of Membrane Science, 2006, 285, 81-89.	8.2	226
164	Optical method for long-term and large-scale monitoring of spatial biofilm development. Biotechnology and Bioengineering, 2006, 94, 773-782.	3.3	27
165	Evaluating heterotrophic growth in a nitrifying biofilm reactor using fluorescence in situ hybridization and mathematical modeling. Water Science and Technology, 2005, 52, 135-141.	2.5	28
166	Optimization of Enhanced Biological Phosphorus Removal after Periods of Low Loading. Water Environment Research, 2005, 77, 117-127.	2.7	10
167	Modeling Steady-State Biofilms with Dual-Substrate Limitations. Journal of Environmental Engineering, ASCE, 2005, 131, 320-326.	1.4	8
168	Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge. Water Research, 2005, 39, 456-468.	11.3	34
169	Quantification of detachment forces on rigid biofilm colonies in a roto-torque reactor using computational fluid dynamics tools. Water Science and Technology, 2005, 52, 149-154.	2.5	8
170	A mesoscale model for hydrodynamics in biofilms that takes microscopic flow effects into account. Water Science and Technology, 2005, 52, 167-172.	2.5	9
171	Results from the multi-species Benchmark Problem (BM3) using one-dimensional models. Water Science and Technology, 2004, 49, 163-168.	2.5	24
172	Modelling a spatially heterogeneous biofilm and the bulk fluid: selected results from Benchmark Problem 2 (BM2). Water Science and Technology, 2004, 49, 155-162.	2.5	18
173	Introduction to the IWA Task Group on Biofilm Modeling. Water Science and Technology, 2004, 49, 131-136.	2.5	14
174	International evaluation of current and future requirements for environmental engineering education. Water Science and Technology, 2004, 49, 11-18.	2.5	5
175	Comparing biofilm models for a single species biofilm system. Water Science and Technology, 2004, 49, 145-154.	2.5	31
176	Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere, 2004, 55, 691-703.	8.2	135
177	Influence of growth history on sloughing and erosion from biofilms. Water Research, 2004, 38, 3671-3684.	11.3	110
178	Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnology and Bioengineering, 2003, 81, 607-617.	3.3	188
179	Oligonucleotide probe hybridization and modeling results suggest that populations consuming readily degradable substrate have high cellular RNA levels. Water Science and Technology, 2002, 45, 115-126.	2.5	11
180	Model evaluation and optimisation of nutrient removal potential for sequencing batch reactors. Water S A, 2002, 28, 423.	0.4	32

#	Article	IF	CITATIONS
181	The use of mathematical models in teaching wastewater treatment engineering. Water Science and Technology, 2002, 45, 229-233.	2.5	24
182	The European Perspective of MTBE as an Oxygenate in Fuels. , 2002, , .		0
183	Use and Occurrence of Fuel Oxygenates in Europe. ACS Symposium Series, 2001, , 58-79.	0.5	17
184	The mechanism and design of sequencing batch reactor systems for nutrient removal - the state of the art. Water Science and Technology, 2001, 43, 53-60.	2.5	68
185	Biofilm models for the practitioner. Water Science and Technology, 2000, 41, 509-512.	2.5	37
186	Evaluating 3-D and 1-D mathematical models for mass transport in heterogeneous biofilms. Water Science and Technology, 2000, 41, 347-356.	2.5	31
187	Effect of long-term idle periods on the performance of sequencing batch reactors. Water Science and Technology, 2000, 41, 105-113.	2.5	111
188	Influence of detachment mechanisms on competition in biofilms. Water Research, 2000, 34, 417-426.	11.3	113
189	Controlled biomass removal - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems. Water Science and Technology, 1999, 39, 33-40.	2.5	30
190	Controlled biomass removal —the key parameter to achieve enhanced biological phosphorus removal in biofilm systems. Water Science and Technology, 1999, 39, 33.	2.5	39
191	Aerobic granulation in a sequencing batch reactor. Water Research, 1999, 33, 2283-2290.	11.3	663
192	Sequencing Batch Reactor Technology: Concepts, Design and Experiences (<i>Abridged</i>). Water and Environment Journal, 1998, 12, 314-320.	2.2	20
193	Modeling of enhanced biological phosphorus removal in a sequencing batch biofilm reactor. Water Science and Technology, 1998, 37, 583.	2.5	14
194	Modeling of enhanced biological phosphorus removal in a sequencing batch biofilm reactor. Water Science and Technology, 1998, 37, 583-587.	2.5	14
195	Aerobic granular sludge in a sequencing batch reactor. Water Research, 1997, 31, 3191-3194.	11.3	499
196	Nutrient Limitation in a Compost Biofilter Degrading Hexane. Journal of the Air and Waste Management Association, 1996, 46, 300-308.	1.9	36