
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2976717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological responses to mixing in large scale bioreactors. Journal of Biotechnology, 2001, 85, 175-185.	3.8	394
2	Scale-down simulators for metabolic analysis of large-scale bioprocesses. Current Opinion in Biotechnology, 2010, 21, 114-121.	6.6	161
3	Bioactive Secondary Metabolites from <i>Bacillus subtilis</i> : A Comprehensive Review. Journal of Natural Products, 2019, 82, 2038-2053.	3.0	161
4	A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microbial Cell Factories, 2010, 9, 11.	4.0	140
5	Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks. Microbial Cell Factories, 2008, 7, 31.	4.0	139
6	Limiting factors inEscherichia colifed-batch production of recombinant proteins. Biotechnology and Bioengineering, 2003, 81, 158-166.	3.3	135
7	Inclusion Bodies: Formation and Utilisation. Advances in Biochemical Engineering/Biotechnology, 2004, 89, 93-142.	1.1	131
8	A Novel Monothiol Glutaredoxin (Grx4) from Escherichia coli Can Serve as a Substrate for Thioredoxin Reductase. Journal of Biological Chemistry, 2005, 280, 24544-24552.	3.4	129
9	Metabolic load of recombinant protein production: Inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene inEscherichia coli. Biotechnology and Bioengineering, 2003, 83, 53-64.	3.3	122
10	Monitoring of genes that respond to overproduction of an insoluble recombinant protein inEscherichia coli glucose-limited fed-batch fermentations. Biotechnology and Bioengineering, 2000, 70, 217-224.	3.3	117
11	Influence of substrate oscillations on acetate formation and growth yield inEscherichia coliglucose limited fed-batch cultivations. Biotechnology and Bioengineering, 1995, 47, 139-146.	3.3	114
12	Pseudomonas fluorescens biofilms subjected to phage philBB-PF7A. BMC Biotechnology, 2008, 8, 79.	3.3	107
13	Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Research, 2014, 42, 6630-6644.	14.5	105
14	High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microbial Cell Factories, 2010, 9, 42.	4.0	103
15	In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?. Renewable and Sustainable Energy Reviews, 2017, 75, 927-937.	16.4	103
16	Fungi as source for new bio-based materials: a patent review. Fungal Biology and Biotechnology, 2019, 6, 17.	5.1	102
17	Consistent development of bioprocesses from microliter cultures to the industrial scale. Engineering in Life Sciences, 2013, 13, 224-238.	3.6	95
18	Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnology, 2008, 8, 80.	3.3	94

#	Article	IF	CITATIONS
19	Phage control of dual species biofilms of <i>Pseudomonas fluorescens</i> and <i>Staphylococcus lentus</i> . Biofouling, 2010, 26, 567-575.	2.2	93
20	Analytical biotechnology: from single molecule and single cell analyses to population dynamics of metabolites and cells. Current Opinion in Biotechnology, 2010, 21, 1-3.	6.6	91
21	Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli. Journal of Biotechnology, 1996, 46, 255-263.	3.8	89
22	Role of Microbial Hydrolysis in Anaerobic Digestion. Energies, 2020, 13, 5555.	3.1	83
23	Electric chips for rapid detection and quantification of nucleic acids. Biosensors and Bioelectronics, 2004, 19, 537-546.	10.1	82
24	Online optimal experimental reâ€design in robotic parallel fedâ€batch cultivation facilities. Biotechnology and Bioengineering, 2017, 114, 610-619.	3.3	80
25	Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations ofEscherichia coli. Biotechnology and Bioengineering, 2001, 73, 347-357.	3.3	79
26	Influence of controlled glucose oscillations on a fed-batch process of recombinant Escherichia coli. Journal of Biotechnology, 2000, 79, 27-37.	3.8	77
27	Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microbial Cell Factories, 2016, 15, 97.	4.0	76
28	Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. Journal of Biotechnology, 2000, 84, 175-185.	3.8	74
29	High cell density media for Escherichia coli are generally designed for aerobic cultivations – consequences for large-scale bioprocesses and shake flask cultures. Microbial Cell Factories, 2008, 7, 26.	4.0	73
30	Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures. Microbial Cell Factories, 2010, 9, 35.	4.0	68
31	Growth Rate Related Concentration Changes of the Starvation Response Regulators σS and ppGpp in Glucose-Limited Fed-Batch and Continuous Cultures of Escherichia coli. Biotechnology Progress, 1999, 15, 123-129.	2.6	67
32	Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110. Microbial Cell Factories, 2008, 7, 30.	4.0	67
33	Response of guanosine tetraphosphate to glucose fluctuations in fed-batch cultivations of Escherichia coli. Journal of Biotechnology, 1995, 43, 195-204.	3.8	65
34	Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microbial Cell Factories, 2005, 4, 9.	4.0	64
35	The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microbial Cell Factories, 2005, 4, 6.	4.0	59
36	Response of <i>Corynebacterium glutamicum</i> exposed to oscillating cultivation conditions in a two―and a novel threeâ€compartment scaleâ€down bioreactor. Biotechnology and Bioengineering, 2015, 112, 1220-1231.	3.3	58

#	Article	IF	CITATIONS
37	Quality control of inclusion bodies in Escherichia coli. Microbial Cell Factories, 2010, 9, 41.	4.0	57
38	A twoâ€compartment bioreactor system made of commercial parts for bioprocess scaleâ€down studies: Impact of oscillations on <i>Bacillus subtilis</i> fedâ€batch cultivations. Biotechnology Journal, 2011, 6, 1009-1017.	3.5	56
39	Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum. Microbial Cell Factories, 2014, 13, 6.	4.0	56
40	Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnology Letters, 2017, 39, 473-482.	2.2	56
41	Sandwich hybridisation assay for quantitative detection of yeast RNAs in crude cell lysates. Microbial Cell Factories, 2003, 2, 4.	4.0	55
42	Environmental life cycle assessment of biogas production from marine macroalgal feedstock for the substitution of energy crops. Journal of Cleaner Production, 2017, 140, 977-985.	9.3	55
43	Effective inhibition of lytic development of bacteriophages lambda, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnology, 2007, 7, 13.	3.3	54
44	The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microbial Cell Factories, 2016, 15, 110.	4.0	54
45	Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction. Microbial Cell Factories, 2007, 6, 21.	4.0	53
46	Reconstituted Biosynthesis of the Nonribosomal Macrolactone Antibiotic Valinomycin in <i>Escherichia coli</i> . ACS Synthetic Biology, 2014, 3, 432-438.	3.8	53
47	Octaketideâ€producing type III polyketide synthase from <i>Hypericum perforatum</i> is expressed in dark glands accumulating hypericins. FEBS Journal, 2008, 275, 4329-4342.	4.7	50
48	Application of Continuous Culture Methods to Recombinant Protein Production in Microorganisms. Microorganisms, 2018, 6, 56.	3.6	50
49	High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microbial Cell Factories, 2011, 10, 107.	4.0	49
50	Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess and Biosystems Engineering, 2014, 37, 1151-1162.	3.4	49
51	Modelling overflow metabolism in Escherichia coli by acetate cycling. Biochemical Engineering Journal, 2017, 125, 23-30.	3.6	49
52	A role for bacteriophage T4 rI gene function in the control of phage development during pseudolysogeny and in slowly growing host cells. Research in Microbiology, 2003, 154, 547-552.	2.1	48
53	Stringent control of replication of plasmids derived from coliphage λ. Molecular Genetics and Genomics, 1991, 225, 94-98.	2.4	46
54	Amplification of ColE1 related plasmids in recombinant cultures of Escherichia coli after IPTG induction. Journal of Biotechnology, 1998, 64, 197-210.	3.8	46

#	Article	IF	CITATIONS
55	Discharging tRNAs: a tug of war between translation and detoxification in <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, 8324-8334.	14.5	46
56	Regulation of Bacteriophage λ Development by Guanosine 5′-Diphosphate-3′-diphosphate. Virology, 1999, 262, 431-441.	2.4	45
57	Efficient lactic acid production from high salt containing dairy by-products by Lactobacillus salivarius ssp. salicinius with pre-treatment by proteolytic microorganisms. Journal of Biotechnology, 2005, 117, 421-431.	3.8	45
58	Physiology of Resistant Deinococcus geothermalis Bacterium Aerobically Cultivated in Low-Manganese Medium. Journal of Bacteriology, 2012, 194, 1552-1561.	2.2	45
59	Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides. FEBS Journal, 2013, 280, 1475-1490.	4.7	45
60	Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. New Biotechnology, 2014, 31, 579-585.	4.4	45
61	A new wireless system for decentralised measurement of physiological parameters from shake flasks. Microbial Cell Factories, 2006, 5, 8.	4.0	43
62	Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures. Microbial Cell Factories, 2013, 12, 73.	4.0	43
63	Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli. Microbial Cell Factories, 2003, 2, 2.	4.0	42
64	Synthesis of 2,6â€Đihalogenated Purine Nucleosides by Thermostable Nucleoside Phosphorylases. Advanced Synthesis and Catalysis, 2015, 357, 1237-1244.	4.3	42
65	Bare laserâ€synthesized Auâ€based nanoparticles as nondisturbing surfaceâ€enhanced Raman scattering probes for bacteria identification. Journal of Biophotonics, 2018, 11, e201700225.	2.3	42
66	A modelâ€based framework for parallel scaleâ€down fedâ€batch cultivations in miniâ€bioreactors for accelerated phenotyping. Biotechnology and Bioengineering, 2019, 116, 2906-2918.	3.3	41
67	A Big World in Small Grain: A Review of Natural Milk Kefir Starters. Microorganisms, 2020, 8, 192.	3.6	41
68	Enhancing the production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea by biotransformation of cinnamyl alcohol. Plant Science, 2004, 166, 229-236.	3.6	40
69	Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture. Tree Physiology, 2012, 32, 1274-1287.	3.1	39
70	Comparative investigations on thermostable pyrimidine nucleoside phosphorylases from Geobacillus thermoglucosidasius and Thermus thermophilus. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 27-34.	1.8	38
71	Enhanced production of the nonribosomal peptide antibiotic valinomycin in Escherichia coli through small-scale high cell density fed-batch cultivation. Applied Microbiology and Biotechnology, 2014, 98, 591-601.	3.6	38
72	Role of the general stress response during strong overexpression of a heterologous gene in Escherichia coli. Applied Microbiology and Biotechnology, 2002, 58, 330-337.	3.6	37

#	Article	IF	CITATIONS
73	Functional Role of the Conserved Active Site Proline of Triosephosphate Isomeraseâ€,‡. Biochemistry, 2006, 45, 15483-15494.	2.5	37
74	Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories?. Journal of Applied Genetics, 2004, 45, 111-20.	1.9	37
75	Fed-batch process for the psychrotolerant marine bacterium Pseudoalteromonas haloplanktis. Microbial Cell Factories, 2010, 9, 72.	4.0	36
76	The General Stress Sigma Factor Ï, ^S of <i>Escherichia coli</i> Is Induced during Diauxic Shift from Glucose to Lactose. Journal of Bacteriology, 1998, 180, 6203-6206.	2.2	36
77	Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. New Biotechnology, 2012, 29, 235-242.	4.4	35
78	Robotic Platform for Parallelized Cultivation and Monitoring of Microbial Growth Parameters in Microwell Plates. Journal of the Association for Laboratory Automation, 2014, 19, 593-601.	2.8	35
79	Tools for the determination of population heterogeneity caused by inhomogeneous cultivation conditions. Journal of Biotechnology, 2017, 251, 84-93.	3.8	35
80	Integrated Robotic Mini Bioreactor Platform for Automated, Parallel Microbial Cultivation With Online Data Handling and Process Control. SLAS Technology, 2019, 24, 569-582.	1.9	35
81	Characterization of Adhesion Threads of Deinococcus geothermalis as Type IV Pili. Journal of Bacteriology, 2006, 188, 7016-7021.	2.2	34
82	Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expression and Purification, 2013, 91, 147-154.	1.3	34
83	High-level production of human collagen prolyl 4-hydroxylase in Escherichia coli. Matrix Biology, 2005, 24, 59-68.	3.6	33
84	Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Microbial Cell Factories, 2015, 14, 83.	4.0	33
85	Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply. Bioresource Technology, 2016, 219, 536-544.	9.6	33
86	Route efficiency assessment and review of the synthesis of β-nucleosides <i>via N</i> -glycosylation of nucleobases. Green Chemistry, 2021, 23, 37-50.	9.0	33
87	Optimized Analysis of Intracellular Adenosine and Guanosine Phosphates in Escherichia coli. Analytical Biochemistry, 1999, 271, 43-52.	2.4	32
88	How scalable and suitable are single-use bioreactors?. Current Opinion in Biotechnology, 2018, 53, 240-247.	6.6	32
89	An expression vector system providing plasmid stability and conditional suicide of plasmid-containing cells. Applied Microbiology and Biotechnology, 1992, 38, 91-3.	3.6	31
90	Fermentation process for tetrameric human collagen prolyl 4-hydroxylase in Escherichia coli: Improvement by gene optimisation of the PDI/l² subunit and repeated addition of the inducer anhydrotetracycline. Journal of Biotechnology, 2007, 128, 308-321.	3.8	31

#	Article	IF	CITATIONS
91	Cultivation of Cells and Microorganisms in Waveâ€Mixed Disposable Bag Bioreactors at Different Scales. Chemie-Ingenieur-Technik, 2013, 85, 57-66.	0.8	31
92	CFD predicted pH gradients in lactic acid bacteria cultivations. Biotechnology and Bioengineering, 2019, 116, 769-780.	3.3	31
93	Online bioprocess data generation, analysis, and optimization for parallel fedâ€batch fermentations in milliliter scale. Engineering in Life Sciences, 2017, 17, 1195-1201.	3.6	30
94	Rocking Aspergillus: morphology-controlled cultivation of Aspergillus niger in a wave-mixed bioreactor for the production of secondary metabolites. Microbial Cell Factories, 2018, 17, 128.	4.0	30
95	Expression of Escherichia coli Glutaredoxin 2 Is Mainly Regulated by ppGpp and Ï,S. Journal of Biological Chemistry, 2002, 277, 17775-17780.	3.4	29
96	Sensitive genus-specific detection of Legionella by a 16S rRNA based sandwich hybridization assay. Journal of Microbiological Methods, 2005, 62, 167-179.	1.6	29
97	Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance. Chinese Journal of Chemical Engineering, 2019, 27, 257-277.	3.5	29
98	Sandwich Hybridization Assay for Sensitive Detection of Dynamic Changes in mRNA Transcript Levels in Crude Escherichia coli Cell Extracts in Response to Copper Ions. Applied and Environmental Microbiology, 2008, 74, 7463-7470.	3.1	28
99	Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures. Microbial Cell Factories, 2011, 10, 50.	4.0	28
100	Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sensors and Actuators B: Chemical, 2011, 156, 517-526.	7.8	28
101	Design of experimentsâ€based highâ€throughput strategy for development and optimization of efficient cell disruption protocols. Engineering in Life Sciences, 2017, 17, 1166-1172.	3.6	27
102	An observational study of ballooning in large spiders: Nanoscale multifibers enable large spiders' soaring flight. PLoS Biology, 2018, 16, e2004405.	5.6	27
103	In-Line Monitoring of Polyhydroxyalkanoate (PHA) Production during High-Cell-Density Plant Oil Cultivations Using Photon Density Wave Spectroscopy. Bioengineering, 2019, 6, 85.	3.5	27
104	Recovery of the PHA Copolymer P(HB-co-HHx) With Non-halogenated Solvents: Influences on Molecular Weight and HHx-Content. Frontiers in Bioengineering and Biotechnology, 2020, 8, 944.	4.1	27
105	Amplification of pBR322 plasmid DNA inEscherichia coli relA strains during batch and fed-batch fermentation. Journal of Basic Microbiology, 1990, 30, 37-41.	3.3	26
106	Change of extracellular cAMP concentration is a sensitive reporter for bacterial fitness in high-cell-density cultures ofEscherichia coli. Biotechnology and Bioengineering, 2004, 87, 602-613.	3.3	26
107	Volatile compounds produced by fungi grown in strawberry jam. LWT - Food Science and Technology, 2008, 41, 2051-2056.	5.2	26
108	Immobilization of thermostable nucleoside phosphorylases on MagReSyn® epoxide microspheres and their application for the synthesis of 2,6-dihalogenated purine nucleosides. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 119-127.	1.8	26

#	Article	IF	CITATIONS
109	Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips. Microorganisms, 2019, 7, 105.	3.6	26
110	Improved production of human type II procollagen in the yeast Pichia pastoris in shake flasks by a wireless-controlled fed-batch system. BMC Biotechnology, 2008, 8, 33.	3.3	25
111	Anaerobic Digestion Model (AM2) for the Description of Biogas Processes at Dynamic Feedstock Loading Rates. Chemie-Ingenieur-Technik, 2017, 89, 686-695.	0.8	25
112	Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals, 2018, 11, 68.	3.8	25
113	Modelling concentration gradients in fedâ€batch cultivations of <scp><i>E. coli</i></scp> –Âtowards the flexible design of scaleâ€down experiments. Journal of Chemical Technology and Biotechnology, 2019, 94, 516-526.	3.2	25
114	Output uncertainty of dynamic growth models: Effect of uncertain parameter estimates on model reliability. Biochemical Engineering Journal, 2019, 150, 107247.	3.6	25
115	LC/MS/MS identiï¬cation of glycosides produced by biotransformation of cinnamyl alcohol inRhodiola rosea compact callus aggregates. Biomedical Chromatography, 2004, 18, 550-558.	1.7	24
116	Heterologous Biosynthesis, Modifications and Structural Characterization of Ruminococcin-A, a Lanthipeptide From the Gut Bacterium Ruminococcus gnavus E1, in Escherichia coli. Frontiers in Microbiology, 2018, 9, 1688.	3.5	24
117	General Principles for Yield Optimization of Nucleoside Phosphorylaseâ€Catalyzed Transglycosylations. ChemBioChem, 2020, 21, 1428-1432.	2.6	24
118	Separation, Characterization, and Handling of Microalgae by Dielectrophoresis. Microorganisms, 2020, 8, 540.	3.6	24
119	Substrate Spectra of Nucleoside Phosphorylases and their Potential in the Production of Pharmaceutically Active Compounds. Current Pharmaceutical Design, 2018, 23, 6913-6935.	1.9	24
120	RNA-based sandwich hybridisation method for detection of lactic acid bacteria in brewery samples. Journal of Microbiological Methods, 2007, 68, 543-553.	1.6	23
121	Isolation and genotype-dependent, organ-specific expression analysis of a Rhodiola rosea cDNA encoding tyrosine decarboxylase. Journal of Plant Physiology, 2009, 166, 1581-1586.	3.5	23
122	Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with perfluorinated oxygen carrier. Bioprocess and Biosystems Engineering, 2013, 36, 1079-1086.	3.4	23
123	Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. Molecular Catalysis, 2018, 458, 52-59.	2.0	23
124	Characterization of the response of GFP microbial biosensors sensitive to substrate limitation in scale-down bioreactors. Biochemical Engineering Journal, 2011, 55, 131-139.	3.6	22
125	Growth and docosahexaenoic acid production performance of the heterotrophic marine microalgae <i>Crypthecodinium cohnii</i> in the waveâ€mixed singleâ€use reactor <scp>CELL</scp> â€tainer. Engineering in Life Sciences, 2014, 14, 254-263.	3.6	22
126	Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis. Applied Microbiology and Biotechnology, 2018, 102, 4009-4023.	3.6	22

#	Article	IF	CITATIONS
127	Thermodynamic Reaction Control of Nucleoside Phosphorolysis. Advanced Synthesis and Catalysis, 2020, 362, 867-876.	4.3	22
128	Phase Separation in Anaerobic Digestion: A Potential for Easier Process Combination?. Frontiers in Chemical Engineering, 2021, 3, .	2.7	22
129	Enhanced Biotransformation Capacity of Rhodiola rosea Callus Cultures for Glycosid Production. Plant Cell, Tissue and Organ Culture, 2005, 83, 129-135.	2.3	21
130	16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. Journal of Microbiological Methods, 2006, 67, 44-55.	1.6	21
131	Heterologous production of active ribonuclease inhibitor in Escherichia coli by redox state control and chaperonin coexpression. Microbial Cell Factories, 2011, 10, 65.	4.0	21
132	A UV/Vis Spectroscopy-Based Assay for Monitoring of Transformations Between Nucleosides and Nucleobases. Methods and Protocols, 2019, 2, 60.	2.0	21
133	Characterization of the Metabolic Response of Streptomyces clavuligerus to Shear Stress in Stirred Tanks and Single-Use 2D Rocking Motion Bioreactors for Clavulanic Acid Production. Antibiotics, 2019, 8, 168.	3.7	21
134	Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design. Frontiers in Bioengineering and Biotechnology, 2019, 7, 122.	4.1	21
135	Direct and indirect use of GFP whole cell biosensors for the assessment of bioprocess performances: Design of milliliter scaleâ€down bioreactors. Biotechnology Progress, 2013, 29, 48-59.	2.6	20
136	Type II thioesterase improves heterologous biosynthesis of valinomycin in Escherichia coli. Journal of Biotechnology, 2015, 193, 16-22.	3.8	20
137	Adaptive optimal operation of a parallel robotic liquid handling station. IFAC-PapersOnLine, 2018, 51, 765-770.	0.9	20
138	Antisense RNA based down-regulation of RNaseE in E. coli. Microbial Cell Factories, 2006, 5, 38.	4.0	19
139	Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli. Microbial Cell Factories, 2011, 10, 31.	4.0	19
140	Accelerated Bioprocess Development of Endopolygalacturonase-Production with Saccharomyces cerevisiae Using Multivariate Prediction in a 48 Mini-Bioreactor Automated Platform. Bioengineering, 2018, 5, 101.	3.5	19
141	Low-quality animal by-product streams for the production of PHA-biopolymers: fats, fat/protein-emulsions and materials with high ash content as low-cost feedstocks. Biotechnology Letters, 2021, 43, 579-587.	2.2	19
142	Introduction of the tac-promoter by lactose under fermentation conditions. Acta Biotechnologica, 1991, 11, 23-29.	0.9	18
143	Proliferation of mycobacteria in a piggery environment revealed by mycobacterium-specific real-time quantitative PCR and 16S rRNA sandwich hybridization. Veterinary Microbiology, 2007, 120, 105-112.	1.9	18
144	Bioprocess Development in Singleâ€Use Systems for Heterotrophic Marine Microalgae. Chemie-Ingenieur-Technik, 2013, 85, 153-161.	0.8	18

#	Article	IF	CITATIONS
145	Single-use bioreactors for microbial cultivation. Pharmaceutical Bioprocessing, 2013, 1, 167-177.	0.8	18
146	Performance loss of <i>Corynebacterium glutamicum</i> cultivations under scaleâ€down conditions using complex media. Engineering in Life Sciences, 2016, 16, 620-632.	3.6	18
147	Antibacterial and anticancer activities of orphan biosynthetic gene clusters from Atlantis II Red Sea brine pool. Microbial Cell Factories, 2019, 18, 56.	4.0	18
148	The Nonribosomal Peptide Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms, 2021, 9, 780.	3.6	18
149	Miniâ€scale cultivation method enables expeditious plasmid production in <i>Escherichia coli</i> . Biotechnology Journal, 2014, 9, 128-136.	3.5	17
150	Modular Enzymatic Cascade Synthesis of Nucleotides Using a (d)ATP Regeneration System. Frontiers in Bioengineering and Biotechnology, 2020, 8, 854.	4.1	17
151	Efficient Biocatalytic Synthesis of Dihalogenated Purine Nucleoside Analogues Applying Thermodynamic Calculations. Molecules, 2020, 25, 934.	3.8	17
152	Small-scale slow glucose feed cultivation of Pichia pastoris without repression of AOX1 promoter: towards high throughput cultivations. Bioprocess and Biosystems Engineering, 2014, 37, 1261-1269.	3.4	16
153	Mixed integer optimal control of an intermittently aerated sequencing batch reactor for wastewater treatment. Computers and Chemical Engineering, 2014, 71, 298-306.	3.8	16
154	An Engineered <i>Escherichia coli</i> Strain with Synthetic Metabolism for in ell Production of Translationally Active Methionine Derivatives. ChemBioChem, 2020, 21, 3525-3538.	2.6	16
155	Accumulation of amino acids deriving from pyruvate in <i>Escherichia coli</i> W3110 during fed-batch cultivation in a two-compartment scale-down bioreactor. Advances in Bioscience and Biotechnology (Print), 2011, 02, 336-339.	0.7	16
156	Twoâ€dimensional proteome reference map for the radiationâ€resistant bacterium <i>Deinococcus geothermalis</i> . Proteomics, 2010, 10, 555-563.	2.2	15
157	Singleâ€chain antibody fragment production in <i>Pichia pastoris</i> : Benefits of prolonged preâ€induction glycerol feeding. Biotechnology Journal, 2011, 6, 452-462.	3.5	15
158	Detection of growth rateâ€dependent product formation in miniaturized parallel fedâ€batch cultivations. Engineering in Life Sciences, 2017, 17, 1215-1220.	3.6	15
159	Development of an iridium-based pH sensor for bioanalytical applications. Journal of Solid State Electrochemistry, 2018, 22, 51-60.	2.5	15
160	Real-time monitoring of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy. Microbial Cell Factories, 2018, 17, 73.	4.0	15
161	Biocatalytic synthesis of seleno-, thio- and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases. Catalysis Communications, 2019, 121, 32-37.	3.3	15
162	Thermophilic nucleoside phosphorylases: Their properties, characteristics and applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140304.	2.3	15

#	Article	IF	CITATIONS
163	Lactose autoinduction with enzymatic glucose release: Characterization of the cultivation system in bioreactor. Protein Expression and Purification, 2014, 94, 67-72.	1.3	14
164	Toward Microbioreactor Arrays: A Slow-Responding Oxygen Sensor for Monitoring of Microbial Cultures in Standard 96-Well Plates. Journal of the Association for Laboratory Automation, 2015, 20, 438-446.	2.8	14
165	An improved HPLC-DAD method for clavulanic acid quantification in fermentation broths of Streptomyces clavuligerus. Journal of Pharmaceutical and Biomedical Analysis, 2016, 120, 241-247.	2.8	14
166	Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with three-dimensional holographic and in situ microscopy. Process Biochemistry, 2017, 52, 223-232.	3.7	14
167	Degradation Kinetics of Clavulanic Acid in Fermentation Broths at Low Temperatures. Antibiotics, 2019, 8, 6.	3.7	14
168	Spectral Unmixingâ€Based Reaction Monitoring of Transformations between Nucleosides and Nucleobases. ChemBioChem, 2020, 21, 2604-2610.	2.6	14
169	Structure-based protein engineering efforts with a monomeric TIM variant: the importance of a single point mutation for generating an active site with suitable binding properties. Protein Engineering, Design and Selection, 2008, 21, 257-266.	2.1	13
170	Twoâ€compartment method for determination of the oxygen transfer rate with electrochemical sensors based on sulfite oxidation. Biotechnology Journal, 2011, 6, 1003-1008.	3.5	13
171	Editorial: Bioprocess Development in the era of digitalization. Engineering in Life Sciences, 2017, 17, 1140-1141.	3.6	13
172	Improving control in microbial cell factories: from single cell to large-scale bioproduction. FEMS Microbiology Letters, 2018, 365, .	1.8	13
173	Automated Conditional Screening of Multiple Escherichia coli Strains in Parallel Adaptive Fed-Batch Cultivations. Bioengineering, 2020, 7, 145.	3.5	13
174	Heterologous Hydrogenase Overproduction Systems for Biotechnology—An Overview. International Journal of Molecular Sciences, 2020, 21, 5890.	4.1	13
175	Quantification of Major Bacteria and Yeast Species in Kefir Consortia by Multiplex TaqMan qPCR. Frontiers in Microbiology, 2020, 11, 1291.	3.5	13
176	Modelling of translation of human protein disulfide isomerase in Escherichia coli—A case study of gene optimisation. Journal of Biotechnology, 2005, 120, 11-24.	3.8	12
177	Cultivation of Marine Microorganisms in Single-Use Systems. Advances in Biochemical Engineering/Biotechnology, 2013, 138, 179-206.	1.1	12
178	Harmonization and characterization of different singleâ€use bioreactors adopting a new sparger design. Engineering in Life Sciences, 2014, 14, 272-282.	3.6	12
179	Importance of the cultivation history for the response of Escherichia coli to oscillations in scale-down experiments. Bioprocess and Biosystems Engineering, 2018, 41, 1305-1313.	3.4	12
180	Dynamic Modelling of Phosphorolytic Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase. Processes, 2019, 7, 380.	2.8	12

#	Article	IF	CITATIONS
181	The Peculiar Case of the Hyperâ€ŧhermostable Pyrimidine Nucleoside Phosphorylase from <i>Thermus thermophilus</i> **. ChemBioChem, 2021, 22, 1385-1390.	2.6	12
182	Substrate-Flexible Two-Stage Fed-Batch Cultivations for the Production of the PHA Copolymer P(HB-co-HHx) With Cupriavidus necator Re2058/pCB113. Frontiers in Bioengineering and Biotechnology, 2021, 9, 623890.	4.1	12
183	Structural studies show that the A178L mutation in the C-terminal hinge of the catalytic loop-6 of triosephosphate isomerase (TIM) induces a closed-like conformation in dimeric and monomeric TIM. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 178-188.	2.5	11
184	Sandwich ELISA for quantitative detection of human collagen prolyl 4-hydroxylase. Microbial Cell Factories, 2010, 9, 48.	4.0	11
185	Crystallographic binding studies with an engineered monomeric variant of triosephosphate isomerase. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 934-944.	2.5	11
186	Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A. Virology Journal, 2011, 8, 142.	3.4	11
187	Editorial: Towards faster bioprocess development. Biotechnology Journal, 2011, 6, 902-903.	3.5	11
188	Biological performance of two different 1000 L singleâ€use bioreactors applying a simple transfer approach. Engineering in Life Sciences, 2014, 14, 283-291.	3.6	11
189	Fastâ€ŧrack development of a lactase production process with <i>Kluyveromyces lactis</i> by a progressive parameterâ€control workflow. Engineering in Life Sciences, 2017, 17, 1185-1194.	3.6	11
190	Automated Cell Treatment for Competence and Transformation of Escherichia coli in a High-Throughput Quasi-Turbidostat Using Microtiter Plates. Microorganisms, 2018, 6, 60.	3.6	11
191	Diversification of 4′-Methylated Nucleosides by Nucleoside Phosphorylases. ACS Catalysis, 2021, 11, 10830-10835.	11.2	11
192	DNA degradation at elevated temperatures after plasmid amplification in amino acid-starved Escherichia coli cells. Biotechnology Letters, 1996, 18, 321-326.	2.2	10
193	Murine Wnt-1 with an Internal c-myc Tag Recombinantly Produced in Escherichia coli Can Induce Intracellular Signaling of the Canonical Wnt Pathway in Eukaryotic Cells. Journal of Biological Chemistry, 2004, 279, 47520-47527.	3.4	10
194	Protein Inclusion Bodies in Recombinant Bacteria. , 2006, , 237-292.		10
195	High-temperature cultivation and 5′ mRNA optimization are key factors for the efficient overexpression of thermostable Deinococcus geothermalis purine nucleoside phosphorylase in Escherichia coli. Journal of Biotechnology, 2011, 156, 268-274.	3.8	10
196	Inversion of the stereochemical configuration (3S, 5S)-clavaminic acid into (3R, 5R)-clavulanic acid: A computationally-assisted approach based on experimental evidence. Journal of Theoretical Biology, 2016, 395, 40-50.	1.7	10
197	Sterol synthesis and cell size distribution under oscillatory growth conditions in <scp><i>Saccharomyces cerevisiae</i></scp> scaleâ€down cultivations. Yeast, 2018, 35, 213-223.	1.7	10
198	Synthesis of non-canonical branched-chain amino acids in Escherichia coli and approaches to avoid their incorporation into recombinant proteins. Current Opinion in Biotechnology, 2018, 53, 248-253.	6.6	10

#	Article	IF	CITATIONS
199	Comparison of timeâ€gated surfaceâ€enhanced raman spectroscopy (TGâ€SERS) and classical SERS based monitoring of Escherichia coli cultivation samples. Biotechnology Progress, 2018, 34, 1533-1542.	2.6	10
200	An Approach to Ring Resonator Biosensing Assisted by Dielectrophoresis: Design, Simulation and Fabrication. Micromachines, 2020, 11, 954.	2.9	10
201	Monitoring Parallel Robotic Cultivations with Online Multivariate Analysis. Processes, 2020, 8, 582.	2.8	10
202	Optimized Biocatalytic Synthesis of 2â€Selenopyrimidine Nucleosides by Transglycosylation**. ChemBioChem, 2021, 22, 2002-2009.	2.6	10
203	Perspectives for improving circular economy in brackish shrimp aquaculture. Aquaculture Research, 2022, 53, 1169-1180.	1.8	10
204	Characterization of a noninvasive on-line turbidity sensor in shake flasks for biomass measurements. Biochemical Engineering Journal, 2018, 132, 20-28.	3.6	9
205	Multiposition Sensor Technology and Lance-Based Sampling for Improved Monitoring of the Liquid Phase in Biogas Processes. Energy & Fuels, 2015, 29, 4038-4045.	5.1	8
206	Process analytical technologies to monitor the liquid phase of anaerobic cultures. Process Biochemistry, 2019, 76, 1-10.	3.7	8
207	A Genome-Scale Insight into the Effect of Shear Stress During the Fed-Batch Production of Clavulanic Acid by Streptomyces Clavuligerus. Microorganisms, 2020, 8, 1255.	3.6	8
208	Single-Use Printed Biosensor for L-Lactate and Its Application in Bioprocess Monitoring. Processes, 2020, 8, 321.	2.8	8
209	Model reduction of aerobic bioprocess models for efficient simulation. Chemical Engineering Science, 2020, 217, 115512.	3.8	8
210	On the use of electrochemical multi-sensors in biologically charged media. Journal of Sensors and Sensor Systems, 2015, 4, 295-303.	0.9	8
211	Functionalization of Oxideâ€Free Silicon Surfaces for Biosensing Applications. Advanced Materials Interfaces, 2021, 8, 2100927.	3.7	8
212	Improved Enrichment Cultivation of Beer Spoiling Lactic Acid Bacteria by Continuous Glucose Addition to the Culture. Journal of the Institute of Brewing, 2009, 115, 177-182.	2.3	7
213	Parallel production and verification of protein products using a novel highâ€ŧhroughput screening method. Biotechnology Journal, 2011, 6, 1018-1025.	3.5	7
214	Micro-Electromechanical Affinity Sensor for the Monitoring of Glucose in Bioprocess Media. International Journal of Molecular Sciences, 2017, 18, 1235.	4.1	7
215	Bioprocess Development for Lantibiotic Ruminococcin-A Production in Escherichia coli and Kinetic Insights Into LanM Enzymes Catalysis. Frontiers in Microbiology, 2019, 10, 2133.	3.5	7
216	Human Deoxycytidine Kinase Is a Valuable Biocatalyst for the Synthesis of Nucleotide Analogues. Catalysts, 2019, 9, 997.	3.5	7

#	Article	IF	CITATIONS
217	Kinetic Analysis of the Hydrolysis of Pentoseâ€1â€phosphates through Apparent Nucleoside Phosphorolysis Equilibrium Shifts**. ChemPhysChem, 2021, 22, 283-287.	2.1	7
218	Untargeted metabolomics analysis of Ralstonia eutropha during plant oil cultivations reveals the presence of a fucose salvage pathway. Scientific Reports, 2021, 11, 14267.	3.3	7
219	Thermostable adenosine 5′-monophosphate phosphorylase from Thermococcus kodakarensis forms catalytically active inclusion bodies. Scientific Reports, 2021, 11, 16880.	3.3	7
220	Comparison of Enrichment Media for Routine Detection of Beer Spoiling Lactic Acid Bacteria and Development of Trouble-shooting Medium for Lactobacillus backi. Journal of the Institute of Brewing, 2010, 116, 151-156.	2.3	6
221	Modification of Buffered Peptone Water for Improved Recovery of Heatâ€Injuredâ€, <i>Salmonella</i> â€,Typhimurium. Journal of Food Science, 2011, 76, M157-62.	3.1	6
222	Optimization of the chemolithoautotrophic biofilm growth of Cupriavidus necator by means of electrochemical hydrogen synthesis. Chemical Papers, 2018, 72, 1205-1211.	2.2	6
223	Carboxylic acid consumption and production by <i>Corynebacterium glutamicum</i> . Biotechnology Progress, 2019, 35, e2804.	2.6	6
224	Optimization of Culture Conditions for Oxygen-Tolerant Regulatory [NiFe]-Hydrogenase Production from Ralstonia eutropha H16 in Escherichia coli. Microorganisms, 2021, 9, 1195.	3.6	6
225	Lichen cell factories: methods for the isolation of photobiont and mycobiont partners for defined pure and co-cultivation. Microbial Cell Factories, 2022, 21, 80.	4.0	6
226	Copurification of ribosomal protein S2 and DNA-dependent RNA polymerase from heat-shocked cells ofBacillus subtilis. Journal of Basic Microbiology, 1997, 37, 1-9.	3.3	5
227	Investigation of Phenolic Acids in Suspension Cultures of Vitis vinifera Stimulated with Indanoyl-Isoleucine, N-Linolenoyl-L-Glutamine, Malonyl Coenzyme A and Insect Saliva. Metabolites, 2012, 2, 165-177.	2.9	5
228	Enzyme-based glucose delivery as a high content screening tool in yeast-based whole-cell biocatalysis. Applied Microbiology and Biotechnology, 2012, 94, 931-937.	3.6	5
229	Software sensor design considering oscillating conditions as present in industrial scale fedâ€batch cultivations. Biotechnology and Bioengineering, 2013, 110, 1945-1955.	3.3	5
230	An approach to mechanistic event recognition applied on monitoring organic matter depletion in SBRs. AICHE Journal, 2014, 60, 3460-3472.	3.6	5
231	Structure-based directed evolution of a monomeric triosephosphate isomerase: toward a pentose sugar isomerase. Protein Engineering, Design and Selection, 2015, 28, 187-197.	2.1	5
232	Utilisation of solid digestate from acidification reactors of continues two-stage anaerobic digestion processes in Lentinula edodes cultivation. Bioresource Technology Reports, 2019, 8, 100322.	2.7	5
233	Construction and characterization of broad-host-range reporter plasmid suitable for on-line analysis of bacterial host responses related to recombinant protein production. Microbial Cell Factories, 2019, 18, 80.	4.0	5
234	In Situ Microscopy for Real-time Determination of Single-cell Morphology in Bioprocesses. Journal of Visualized Experiments, 2019, , .	0.3	5

#	Article	IF	CITATIONS
235	pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from <i>Geobacillus thermoglucosidasius</i> . Biochemistry, 2021, 60, 1573-1577.	2.5	5
236	High-cell-density fed-batch cultivations of Vibrio natriegens. Biotechnology Letters, 2021, 43, 1723-1733.	2.2	5
237	Cellular Responses to Strong Overexpression of Recombinant Genes in Escherichia Coli. , 2001, , 55-73.		5
238	Potential of Integrating Model-Based Design of Experiments Approaches and Process Analytical Technologies for Bioprocess Scale-Down. Advances in Biochemical Engineering/Biotechnology, 2020, 177, 1-28.	1.1	5
239	High-Yield Production of Catalytically Active Regulatory [NiFe]-Hydrogenase From Cupriavidus necator in Escherichia coli. Frontiers in Microbiology, 2022, 13, 894375.	3.5	5
240	Data of clavulanic acid and clavulanate-imidazole stability atÂlow temperatures. Data in Brief, 2019, 23, 103775.	1.0	4
241	Production of soluble regulatory hydrogenase from Ralstonia eutropha in Escherichia coli using a fed-batch-based autoinduction system. Microbial Cell Factories, 2021, 20, 201.	4.0	4
242	Traditional Grain-Based vs. Commercial Milk Kefirs, How Different Are They?. Applied Sciences (Switzerland), 2022, 12, 3838.	2.5	4
243	Quantitative and sensitive RNA based detection of Bacillus spores. Frontiers in Microbiology, 2014, 5, 92.	3.5	3
244	Electrooptical Determination of Polarizability for On-Line Viability and Vitality Quantification of Lactobacillus plantarum Cultures. Frontiers in Bioengineering and Biotechnology, 2018, 6, 188.	4.1	3
245	From Screening to Production: a Holistic Approach of High-throughput Model-based Screening for Recombinant Protein Production. Computer Aided Chemical Engineering, 2020, , 1723-1728.	0.5	3
246	Adaptive Monitoring of Biotechnological Processes Kinetics. Processes, 2020, 8, 1307.	2.8	3
247	Model based optimization of transflection near infrared spectroscopy as a process analytical tool in a continuous flash pasteurizer. Journal of Food Science, 2020, 85, 2020-2031.	3.1	3
248	TCA Cycle and Its Relationship with Clavulanic Acid Production: A Further Interpretation by Using a Reduced Genome-Scale Metabolic Model of Streptomyces clavuligerus. Bioengineering, 2021, 8, 103.	3.5	3
249	Potentiality of using microbial biosensors for the detection of substrate heterogeneities and the assessment of microbial viability in industrial bioreactors: a complete set of experiments in chemostat and scale down reactors, and elaboration of a mini scale-down platform. Communications in Agricultural and Applied Biological Sciences, 2012, 77, 3-7.	0.0	3
250	Volatilomics-Based Microbiome Evaluation of Fermented Dairy by Prototypic Headspace-Gas Chromatography–High-Temperature Ion Mobility Spectrometry (HS-GC-HTIMS) and Non-Negative Matrix Factorization (NNMF). Metabolites, 2022, 12, 299.	2.9	3
251	Automated Bioprocess Feedback Operation in a High-Throughput Facility via the Integration of a Mobile Robotic Lab Assistant. Frontiers in Chemical Engineering, 2022, 4, .	2.7	3
252	Separation of Heterotrophic Microalgae Crypthecodinium cohnii by Dielectrophoresis. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	3

#	Article	IF	CITATIONS
253	Verfahren zur Produktion von ColE1-verwandten Plasmiden. Acta Biotechnologica, 1990, 10, 303-305.	0.9	2
254	Biofilm control with T7 phages. Journal of Biotechnology, 2007, 131, S252.	3.8	2
255	Note - Preliminary Applications of Response Surface Modelling to the Evaluation of Optimal Growth Conditions for Beer-spoiling Pediococcus damnosus. Journal of the Institute of Brewing, 2010, 116, 211-214.	2.3	2
256	Conference Report: Biochemical engineering taking the challenge: advanced methods for development of industrial scale bioprocesses. Biofuels, 2010, 1, 381-383.	2.4	2
257	The Influence of P. fluorescens Cell Morphology on the Lytic Performance and Production of Phage ï•IBB-PF7A. Current Microbiology, 2011, 63, 347-353.	2.2	2
258	Enzyme-based glucose delivery: a possible tool for biosorbent preparation for heavy metal removal from polluted environments. Bioprocess and Biosystems Engineering, 2013, 36, 1601-1611.	3.4	2
259	Recombinant Protein Production: A Comparative view on host physiology (Laupheim, Germany, March) Tj ETQq1	1 0.78431 4.4	.4 _{.2} gBT /Ove
260	Dynamic Optimization of the PyNP/PNP Phosphorolytic Enzymatic Process Using MOSAICmodeling. Chemie-Ingenieur-Technik, 2017, 89, 1523-1533.	0.8	2
261	Spatial monitoring of the liquid phase with multiparameter sensors in industrial-scale fermenters. TM Technisches Messen, 2017, 84, 620-627.	0.7	2
262	Approach for modelling the extract formation in a continuous conducted "β-amylase rest―as part of the production of beer mash with targeted sugar content. Biochemical Engineering Journal, 2020, 164, 107765.	3.6	2
263	Monitoring the Physiological State in the Dark Fermentation of Maize/Grass Silage Using Flow Cytometry and Electrooptic Polarizability Measurements. Bioenergy Research, 2021, 14, 910-923.	3.9	2
264	Glucose-Limited Fed-Batch Cultivation Strategy to Mimic Large-Scale Effects in Escherichia coli Linked to Accumulation of Non-Canonical Branched-Chain Amino Acids by Combination of Pyruvate Pulses and Dissolved Oxygen Limitation. Microorganisms, 2021, 9, 1110.	3.6	2
265	The General Stress Sigma Factor Ï,S ofEscherichia coli Is Induced during Diauxic Shift from Glucose to Lactose. Journal of Bacteriology, 1998, 180, 6203-6206.	2.2	2
266	Nearâ€infrared spectroscopy for the inline classification and characterization of fruit juices for a productâ€customized flash pasteurization. Food Science and Nutrition, 2022, 10, 800-812.	3.4	2
267	EnBaseâ"¢: Novel highâ€cellâ€densityâ€culture based screening platform. Chemie-Ingenieur-Technik, 2009, 81, 1247-1248.	0.8	1
268	Photo-Optical In Situ Analysis of the Individual Cell Size Distribution as Process Analytical Tool in Bioprocesses. Chemie-Ingenieur-Technik, 2016, 88, 1314-1314.	0.8	1
269	Editorial: Continuous Biomanufacturing in Microbial Systems. Frontiers in Bioengineering and Biotechnology, 2021, 9, 665940.	4.1	1
270	Semi-Automated High-Throughput Substrate Screening Assay for Nucleoside Kinases. International Journal of Molecular Sciences, 2021, 22, 11558.	4.1	1

#	Article	IF	CITATIONS
271	Tuning of fed-batch cultivation of Streptomyces clavuligerus for enhanced Clavulanic Acid production based on genome-scale dynamic modeling. Biochemical Engineering Journal, 2022, 185, 108534.	3.6	1
272	Title is missing!. Microbial Cell Factories, 2006, 5, P32.	4.0	0
273	A Novel Approach to Mechanism Recognition in Escherichia Coli Fed-Batch Fermentations. Computer Aided Chemical Engineering, 2009, 27, 651-656.	0.5	0
274	Bioprocess scale-up from deepwell plates to 100L fermentation with liquid-EnBaseâ,,¢. New Biotechnology, 2009, 25, S223.	4.4	0
275	Electrooptical monitoring of polarizability and cell size in Escherichia coli continuous cultivations. New Biotechnology, 2009, 25, S221.	4.4	0
276	EnBase® - high plasmid yield in micro-scale cultures. Journal of Biotechnology, 2010, 150, 402-402.	3.8	0
277	Divalent ion composition and demand for E. coli in high cell density cultivations. Journal of Biotechnology, 2010, 150, 402-402.	3.8	0
278	Faster bioprocess development from microscale to bioreactor by the consistent use of controlled feed strategies. New Biotechnology, 2012, 29, S13.	4.4	0
279	Use of Sensors in a Scale-Down Simulator. Genetic Engineering and Biotechnology News, 2014, 34, 32-33.	0.1	0
280	Automated development of recombinant bioprocesses–from vision to mission. New Biotechnology, 2014, 31, S50-S51.	4.4	0
281	Scale-down study of oscillations in oxygen and substrate supply for Corynebacterium glutamicum. New Biotechnology, 2014, 31, S50.	4.4	0
282	Model-Based Process Optimization Supports the Synthesis of Pharmaceutically Relevant Nucleoside Derivatives. Chemie-Ingenieur-Technik, 2016, 88, 1245-1245.	0.8	0
283	Crystal structures of two monomeric triosephosphate isomerase variants identifiedviaa directed-evolution protocol selecting forL-arabinose isomerase activity. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 490-499.	0.8	0
284	Spiders' Ballooning Flight as a Model for the Exploration of Hazardous Atmospheric Weather Conditions. Lecture Notes in Computer Science, 2018, , 110-114.	1.3	0
285	Cover Image, Volume 94, Issue 2. Journal of Chemical Technology and Biotechnology, 2019, 94, .	3.2	0
286	Docosahexaenoic acid production from various feedstock for the application as fish feed additive. Chemie-Ingenieur-Technik, 2020, 92, 1174-1174.	0.8	0
287	Molecular genetic approaches to decrease the uncontrolled misincorporation of non-canonical branched chain amino acids into recombinant mini-proinsulin expressed in Escherichia coli. Microbial Cell Factories, 2022, 21, 30.	4.0	0
288	Characterization of reactions and growth in automated continuous flow and bioreactor platforms—From linear DoE to model-based approaches. , 2022, , 273-319.		0

#	Article	IF	CITATIONS
289	Efficient use of lactose for the lac promotercontrolled overexpression of the main antigenic protein of the foot and mouth disease virus in Escherichia coli under fed-batch fermentation conditions. FEMS Microbiology Reviews, 1994, 14, 99-102.	8.6	0