Daniel Viviroli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2976665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrological model calibration with uncertain discharge data. Hydrological Sciences Journal, 2022, 67, 2441-2456.	2.6	26
2	Snow and ice in the hydrosphere. , 2021, , 93-135.		3
3	Climate change risks pushing one-third of global food production outside the safe climatic space. One Earth, 2021, 4, 720-729.	6.8	45
4	Mountain Observatories: Status and Prospects for Enhancing and Connecting a Global Community. Mountain Research and Development, 2021, 41, .	1.0	18
5	Comparing model complexity for glacio-hydrological simulation in the data-scarce Peruvian Andes. Journal of Hydrology: Regional Studies, 2021, 37, 100932.	2.4	6
6	Importance and vulnerability of the world's water towers. Nature, 2020, 577, 364-369.	27.8	885
7	Increasing dependence of lowland populations on mountain water resources. Nature Sustainability, 2020, 3, 917-928.	23.7	156
8	Marked isotopic variability within and between the Amazon River and marine dissolved black carbon pools. Nature Communications, 2019, 10, 4018.	12.8	47
9	Value of a Limited Number of Discharge Observations for Improving Regionalization: A Large ample Study Across the United States. Water Resources Research, 2019, 55, 363-377.	4.2	18
10	Synthetic design hydrographs for ungauged catchments: a comparison of regionalization methods. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1993-2023.	4.0	30
11	Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs. Water Resources Research, 2018, 54, 1852-1867.	4.2	19
12	Effective precipitation duration for runoff peaks based on catchment modelling. Journal of Hydrology, 2018, 556, 510-522.	5.4	30
13	Influence of internal variability on population exposure to hydroclimatic changes. Environmental Research Letters, 2017, 12, 044007.	5.2	22
14	Flood type specific construction of synthetic design hydrographs. Water Resources Research, 2017, 53, 1390-1406.	4.2	65
15	Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration?. Journal of Hydrology, 2017, 554, 613-622.	5.4	37
16	Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th–21st centuries. Environmental Research Letters, 2016, 11, 034010.	5.2	143
17	Floodâ€ŧype classification in mountainous catchments using crisp and fuzzy decision trees. Water Resources Research, 2015, 51, 7959-7976.	4.2	88
18	The potential for snow to supply human water demand in the present and future. Environmental Research Letters, 2015, 10, 114016.	5.2	178

DANIEL VIVIROLI

#	Article	IF	CITATIONS
19	Can a regionalized model parameterisation be improved with a limited number of runoff measurements?. Journal of Hydrology, 2015, 529, 49-61.	5.4	21
20	Seasonality and magnitude of floods in Switzerland under future climate change. Hydrological Processes, 2014, 28, 2567-2578.	2.6	80
21	The importance of glacier and forest change in hydrological climate-impact studies. Hydrology and Earth System Sciences, 2013, 17, 619-635.	4.9	22
22	On the risk of obtaining misleading results by pooling streamflow data for trend analyses. Water Resources Research, 2012, 48, .	4.2	4
23	Relating climate change signals and physiographic catchment properties to clustered hydrological response types. Hydrology and Earth System Sciences, 2012, 16, 2267-2283.	4.9	34
24	Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 2011, 47, .	4.2	342
25	Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 2011, 15, 471-504.	4.9	476
26	Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part II: Parameter regionalisation and flood estimation results. Journal of Hydrology, 2009, 377, 208-225.	5.4	119
27	Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland – Part I: Modelling framework and calibration results. Journal of Hydrology, 2009, 377, 191-207.	5.4	76
28	An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling and Software, 2009, 24, 1209-1222.	4.5	218
29	"Water Towersâ€â€"A Clobal View of the Hydrological Importance of Mountains. , 2008, , 15-20.		27
30	Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research, 2007, 43, .	4.2	839
31	Impacts of environmental change on water resources in the Mt. Kenya region. Journal of Hydrology, 2007, 343, 266-278.	5.4	85
32	Water resources in mountain regions: a methodological approach to assess the water balance in a highland-lowland-system. Hydrological Processes, 2007, 21, 578-585.	2.6	60
33	The hydrological significance of mountains: from regional to global scale. Hydrology and Earth System Sciences, 2004, 8, 1017-1030.	4.9	256
34	Mountains of the World: Vulnerable Water Towers for the 21st Century. Ambio, 2004, 33, 29.	5.5	112
35	Assessing the Hydrological Significance of the World's Mountains. Mountain Research and Development, 2003, 23, 32-40.	1.0	188
36	The Significance of Mountains as Sources of the World's Fresh Water. Gaia, 2002, 11, 182-186.	0.7	9

#	Article	IF	CITATIONS
37	Comments: A New Typology for Mountains and Other Relief Classes: An Application to Global Continental Water Resources and Population Distribution. Mountain Research and Development, 2001, 21, 307-307.	1.0	2
38	How does climate change affect mesoscale catchments in Switzerland? – a framework for a comprehensive assessment. Advances in Geosciences, 0, 27, 111-119.	12.0	29