List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/297617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 2006, 441, 1068-1074.	27.8	1,220
2	The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Developmental Biology, 1979, 70, 396-417.	2.0	820
3	glp-1 Is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell, 1987, 51, 589-599.	28.9	671
4	A PUF family portrait: 3′UTR regulation as a way of life. Trends in Genetics, 2002, 18, 150-157.	6.7	565
5	A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature, 1997, 390, 477-484.	27.8	493
6	Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Developmental Biology, 1981, 87, 286-300.	2.0	491
7	A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature, 2012, 489, 447-451.	27.8	450
8	A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature, 2002, 417, 660-663.	27.8	393
9	Controls of Germline Stem Cells, Entry into Meiosis, and the Sperm/Oocyte Decision inCaenorhabditis elegans. Annual Review of Cell and Developmental Biology, 2007, 23, 405-433.	9.4	348
10	A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature, 2002, 419, 312-316.	27.8	272
11	Cellular Analyses of the Mitotic Region in the Caenorhabditis elegans Adult Germ Line. Molecular Biology of the Cell, 2006, 17, 3051-3061.	2.1	251
12	Gain-of-Function Mutations of <i>fem-3</i> , a Sex-Determination Gene in <i>Caenorhabditis elegans</i> . Genetics, 1987, 115, 107-119.	2.9	251
13	NANOS-3 and FBF proteins physically interact to control the sperm–oocyte switch in Caenorhabditis elegans. Current Biology, 1999, 9, 1009-1018.	3.9	247
14	Control of the sperm–oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3′ untranslated region. Nature, 1991, 349, 346-348.	27.8	237
15	Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell, 1989, 58, 565-571.	28.9	209
16	Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature, 1999, 399, 586-590.	27.8	180
17	LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature, 2000, 405, 364-368.	27.8	175
18	FBF-1 and FBF-2 Regulate the Size of the Mitotic Region in the C. elegans Germline. Developmental Cell, 2004, 7, 697-707.	7.0	167

#	Article	IF	CITATIONS
19	What does the concept of the stem cell niche really mean today?. BMC Biology, 2012, 10, 19.	3.8	155
20	GLD-3 and Control of the Mitosis/Meiosis Decision in the Germline of Caenorhabditis elegans. Genetics, 2004, 168, 147-160.	2.9	154
21	Mastermind is a putative activator for Notch. Current Biology, 2000, 10, R471-R473.	3.9	148
22	Germline proliferation and its control. WormBook, 2005, , 1-14.	5.3	148
23	The gon-1 Gene Is Required for Gonadal Morphogenesis in Caenorhabditis elegans. Developmental Biology, 1999, 216, 382-393.	2.0	144
24	A New Dataset of Spermatogenic <i>vs.</i> Oogenic Transcriptomes in the Nematode <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1765-1772.	1.8	141
25	CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes and Development, 2000, 14, 2596-2609.	5.9	139
26	A β-Catenin Identified by Functional Rather Than Sequence Criteria and Its Role in Wnt/MAPK Signaling. Cell, 2005, 121, 761-772.	28.9	134
27	GLD-3, a Bicaudal-C Homolog that Inhibits FBF to Control Germline Sex Determination in C. elegans. Developmental Cell, 2002, 3, 697-710.	7.0	133
28	Mammalian GLD-2 homologs are poly(A) polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4407-4412.	7.1	128
29	A conserved PUF–Ago–eEF1A complex attenuates translation elongation. Nature Structural and Molecular Biology, 2012, 19, 176-183.	8.2	128
30	FBF and Its Dual Control of <i>gld-1</i> Expression in the <i>Caenorhabditis elegans</i> Germline. Genetics, 2009, 181, 1249-1260.	2.9	119
31	POP-1 controls axis formation during early gonadogenesis in <i>C. elegans</i> . Development (Cambridge), 2002, 129, 443-453.	2.5	118
32	Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3231-3236.	7.1	114
33	Conserved Regulation of MAP Kinase Expression by PUF RNA-Binding Proteins. PLoS Genetics, 2007, 3, e233.	3.5	114
34	Control of cell fate in C. elegans by a GLP-1 peptide consisting primarily of ankyrin repeats. Nature, 1993, 364, 632-635.	27.8	111
35	Genome-wide analysis of mRNA targets for <i>Caenorhabditis elegans</i> FBF, a conserved stem cell regulator. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3936-3941.	7.1	108
36	A New Look at TCF and β-Catenin through the Lens of a Divergent C. elegans Wnt Pathway. Developmental Cell, 2009, 17, 27-34.	7.0	100

#	Article	IF	CITATIONS
37	Progression from a stem cell–like state to early differentiation in the <i>C. elegans</i> germ line. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2048-2053.	7.1	100
38	Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3739-3744.	7.1	98
39	The Oogenic Germline Starvation Response in C. elegans. PLoS ONE, 2011, 6, e28074.	2.5	94
40	The sys-1 and sys-3 Genes Cooperate With Wnt Signaling to Establish the Proximal-Distal Axis of the Caenorhabditis elegans Gonad. Genetics, 2004, 166, 171-186.	2.9	92
41	The GLD-2 poly(A) polymerase activates gld-1 mRNA in the Caenorhabditis elegans germ line. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15108-15112.	7.1	85
42	Moremog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line ofCaenorhabditis elegans. Genesis, 1993, 14, 471-484.	2.1	82
43	Molecular Regulation of the Mitosis/Meiosis Decision in Multicellular Organisms. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002683-a002683.	5.5	82
44	Dynamics of Notch-Dependent Transcriptional Bursting in Its Native Context. Developmental Cell, 2019, 50, 426-435.e4.	7.0	82
45	Wnt Signaling and CEH-22/tinman/Nkx2.5 Specify a Stem Cell Niche in C. elegans. Current Biology, 2006, 16, 287-295.	3.9	79
46	Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development (Cambridge), 2005, 132, 3471-3481.	2.5	78
47	The <i>Caenorhabditis elegans</i> Sex Determination Gene <i>mog-1</i> Encodes a Member of the DEAH-Box Protein Family. Molecular and Cellular Biology, 1999, 19, 2189-2197.	2.3	75
48	Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch. ELife, 2015, 4, .	6.0	73
49	C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. ELife, 2016, 5, .	6.0	73
50	A Novel Member of the Tob Family of Proteins Controls Sexual Fate in Caenorhabditis elegans Germ Cells. Developmental Biology, 2000, 217, 77-90.	2.0	72
51	Scratching the niche that controls Caenorhabditis elegans germline stem cells. Seminars in Cell and Developmental Biology, 2009, 20, 1107-1113.	5.0	72
52	<i>C. elegans</i> La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. Rna, 2008, 14, 1378-1389.	3.5	71
53	Regulatory Elements Required for Development of <i>Caenorhabditis elegans</i> Hermaphrodites Are Conserved in the <i>tra-2</i> Homologue of <i>C. remanei</i> , a Male/Female Sister Species. Genetics, 2000, 155, 105-116.	2.9	70
54	Regulation of Cell Fate in Caenorhabditis elegans by a Novel Cytoplasmic Polyadenylation Element Binding Protein. Developmental Biology, 2001, 229, 537-553.	2.0	68

#	Article	IF	CITATIONS
55	LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO Journal, 2006, 25, 88-96.	7.8	68
56	Suppression of an amber mutation by microinjection of suppressor tRNA in C. elegans. Nature, 1982, 299, 456-458.	27.8	66
57	Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans. Nature, 1991, 352, 811-815.	27.8	65
58	GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17445-17450.	7.1	65
59	SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genetics, 2017, 13, e1007121.	3.5	64
60	POP-1 controls axis formation during early gonadogenesis in C. elegans. Development (Cambridge), 2002, 129, 443-53.	2.5	60
61	A DTC Niche Plexus Surrounds the Germline Stem Cell Pool in Caenorhabditis elegans. PLoS ONE, 2014, 9, e88372.	2.5	59
62	Redundant control of the Caenorhabditis elegans sperm/oocyte switch by PUF-8 and FBF-1, two distinct PUF RNA-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10893-10897.	7.1	58
63	Antagonism between GLD-2 Binding Partners Controls Gamete Sex. Developmental Cell, 2009, 16, 723-733.	7.0	56
64	The Mysteries of Sexual Identity: The Germ Cell's Perspective. Science, 2007, 316, 400-401.	12.6	55
65	The C. elegans adult male germline: Stem cells and sexual dimorphism. Developmental Biology, 2010, 346, 204-214.	2.0	54
66	Cyclin E and Cdk2 Control GLD-1, the Mitosis/Meiosis Decision, and Germline Stem Cells in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1001348.	3.5	54
67	The PUF binding landscape in metazoan germ cells. Rna, 2016, 22, 1026-1043.	3.5	53
68	Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nature Methods, 2019, 16, 437-445.	19.0	52
69	Conservation of <i>glp-1</i> Regulation and Function in Nematodes. Genetics, 2001, 157, 639-654.	2.9	51
70	The sys-1 Gene and Sexual Dimorphism during Gonadogenesis in Caenorhabditis elegans. Developmental Biology, 2001, 230, 61-73.	2.0	50
71	The TRA-1 transcription factor binds TRA-2 to regulate sexual fates in Caenorhabditis elegans. EMBO Journal, 2001, 20, 1363-1372.	7.8	48
72	A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. Rna, 2008, 14, 1550-1557.	3.5	47

#	Article	IF	CITATIONS
73	Germline Stem Cells and Their Regulation in the Nematode Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2013, 786, 29-46.	1.6	44
74	Analysis of the C. elegans Germline Stem Cell Pool. Methods in Molecular Biology, 2017, 1463, 1-33.	0.9	42
75	Identification of a Conserved Interface between PUF and CPEB Proteins. Journal of Biological Chemistry, 2012, 287, 18854-18862.	3.4	40
76	C. elegans: Sequence to Biology. , 1998, 282, 2011-2011.		37
77	Divergence of Pumilio/fem-3 mRNA Binding Factor (PUF) Protein Specificity through Variations in an RNA-binding Pocket. Journal of Biological Chemistry, 2012, 287, 6949-6957.	3.4	37
78	TRA-1/GLI controls development of somatic gonadal precursors in C. elegans. Development (Cambridge), 2004, 131, 4333-4343.	2.5	34
79	Chemical reprogramming of Caenorhabditis elegans germ cell fate. Nature Chemical Biology, 2010, 6, 102-104.	8.0	34
80	Single-molecule RNA Fluorescence in situ Hybridization (smFISH) in Caenorhabditis elegans. Bio-protocol, 2017, 7, e2357.	0.4	34
81	Strategies from UW-Madison for rescuing biomedical research in the US. ELife, 2015, 4, e09305.	6.0	30
82	C. elegans HLH-2/E/Daughterless controls key regulatory cells during gonadogenesis. Developmental Biology, 2009, 331, 14-25.	2.0	26
83	The Ras-ERK MAPK regulatory network controls dedifferentiation in Caenorhabditis elegans germline. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1847-1855.	4.1	26
84	Mitosis–meiosis and sperm–oocyte fate decisions are separable regulatory events. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3411-3416.	7.1	26
85	Embryonic Stem Cell Growth Factors Regulate elF2α Phosphorylation. PLoS ONE, 2015, 10, e0139076.	2.5	26
86	A PUF Hub Drives Self-Renewal in <i>Caenorhabditis elegans</i> Germline Stem Cells. Genetics, 2020, 214, 147-161.	2.9	26
87	C. elegans germ granules require both assembly and localized regulators for mRNA repression. Nature Communications, 2021, 12, 996.	12.8	26
88	Developmental expression of FOG-1/CPEB protein and its control in theCaenorhabditis elegans hermaphrodite germ line. Developmental Dynamics, 2007, 236, 871-879.	1.8	25
89	The molecular basis of LST-1 self-renewal activity and its control of stem cell pool size. Development (Cambridge), 2019, 146, .	2.5	24
90	Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in <i>Caenorhabditis elegans</i> . Genetics, 2016, 202, 221-234.	2.9	23

#	Article	IF	CITATIONS
91	Analysis of the C. elegans Germline Stem Cell Region. Methods in Molecular Biology, 2008, 450, 27-44.	0.9	23
92	Sexual dimorphism of niche architecture and regulation of the <i>Caenorhabditis elegans</i> germline stem cell pool. Molecular Biology of the Cell, 2019, 30, 1757-1769.	2.1	22
93	Phosphorylation state of a Tob/BTG protein, FOG-3, regulates initiation and maintenance of the Caenorhabditis elegans sperm fate program. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9125-9130.	7.1	21
94	PGL germ granule assembly protein is a base-specific, single-stranded RNase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1279-1284.	7.1	21
95	NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans. Molecular and Cellular Proteomics, 2015, 14, 2922-2935.	3.8	20
96	C. elegans germ cells divide and differentiate in a folded tissue. Developmental Biology, 2018, 442, 173-187.	2.0	20
97	<i>glp-3</i> Is Required for Mitosis and Meiosis in the <i>Caenorhabditis elegans</i> Germ Line. Genetics, 1997, 145, 111-121.	2.9	20
98	C. elegans germline stem cells and their niche. Stembook, 2014, , .	0.3	20
99	Toward Identifying Subnetworks from FBF Binding Landscapes in <i>Caenorhabditis</i> Spermatogenic or Oogenic Germlines. G3: Genes, Genomes, Genetics, 2019, 9, 153-165.	1.8	16
100	An RNA-Binding Multimer Specifies Nematode Sperm Fate. Cell Reports, 2018, 23, 3769-3775.	6.4	14
101	The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila melanogaster. Developmental Biology, 2022, 485, 93-122.	2.0	12
102	Genetic control of cell communication inC. elegans development. BioEssays, 1990, 12, 265-271.	2.5	11
103	Non-autonomous regulation of germline stem cell proliferation by somatic MPK-1/MAPK activity in C.Âelegans. Cell Reports, 2021, 35, 109162.	6.4	10
104	A toolkit of tagged alleles reveals strong expression in the germline, embryo, and spermatheca. MicroPublication Biology, 2020, 2020, .	0.1	9
105	Control of Germ Cell Differentiation in <i>Caenorhabditis elegans</i> . Novartis Foundation Symposium, 1994, 182, 179-192.	1.1	8
106	Competence for Chemical Reprogramming of Sexual Fate Correlates with an Intersexual Molecular Signature in <i>Caenorhabditis elegans</i> . Genetics, 2014, 198, 561-575.	2.9	5
107	Notch-dependent DNA <i>cis</i> -regulatory elements and their dose-dependent control of <i>C. elegans</i> stem cell self-renewal. Development (Cambridge), 2022, 149, .	2.5	4
108	Image-Based Single-Molecule Analysis of Notch-Dependent Transcription in Its Natural Context. Methods in Molecular Biology, 2022, , 131-149.	0.9	4

#	Article	IF	CITATIONS
109	Genetics of development elucidated by nematodes. Nature, 1987, 328, 202-202.	27.8	3
110	Two classes of active transcription sites and their roles in developmental regulation. Proceedings of the United States of America, 2020, 117, 26812-26821.	7.1	2
111	John Sulston (1942–2018). Science, 2018, 360, 157-157.	12.6	1
112	TRAID-seq: Unbiased analysis of RNA tailing enzyme activity at single-nucleotide resolution. Protocol Exchange, 0, , .	0.3	1
113	A sensitized genetic screen to identify regulators of <i>Caenorhabditis elegans</i> germline stem cells. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	1
114	An improved in vivo tethering assay with single molecule FISH reveals that a nematode Nanos enhances reporter expression and mRNA stability. Rna, 2021, 27, 643-652.	3.5	0
115	Genetic Control of Cellular Interactions in <i>Caenorhabditis Elegans</i> Development. Novartis Foundation Symposium, 1989, 144, 212-226.	1.1	0
116	An in vivo method to study postâ€ŧranscriptional regulation in germ stem cells. FASEB Journal, 2018, 32, 790.12.	0.5	0
117	Investigation of the ERK/MAP kinase long first intron and its possible role in gene regulation and germ cell development. FASEB Journal, 2019, 33, 459.9.	0.5	0
118	long first intron enhances MPK-1B protein expression. MicroPublication Biology, 2021, 2021, .	0.1	0