Gary M Wessel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genome of the Sea Urchin Strongylocentrotus purpuratus. Science, 2006, 314, 941-952.	6.0	1,018
2	Purified TPC Isoforms Form NAADP Receptors with Distinct Roles for Ca2+ Signaling and Endolysosomal Trafficking. Current Biology, 2010, 20, 703-709.	1.8	234
3	Fertilization Mechanisms in Flowering Plants. Current Biology, 2016, 26, R125-R139.	1.8	229
4	A conserved germline multipotency program. Development (Cambridge), 2010, 137, 4113-4126.	1.2	204
5	Ontogeny of the basal lamina in the sea urchin embryo. Developmental Biology, 1984, 103, 235-245.	0.9	179
6	Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Developmental Biology, 1987, 121, 149-165.	0.9	145
7	Vasa genes: Emerging roles in the germ line and in multipotent cells. BioEssays, 2010, 32, 626-637.	1.2	142
8	PIWI proteins and PIWI-interacting RNAs function in <i>Hydra</i> somatic stem cells. Proceedings of the United States of America, 2014, 111, 337-342.	3.3	140
9	Sequential expression of germ-layer specific molecules in the sea urchin embryo. Developmental Biology, 1985, 111, 451-463.	0.9	136
10	The Oxidative Burst at Fertilization Is Dependent upon Activation of the Dual Oxidase Udx1. Developmental Cell, 2004, 7, 801-814.	3.1	120
11	Defending the Zygote: Search for the Ancestral Animal Block to Polyspermy. Current Topics in Developmental Biology, 2005, 72, 1-151.	1.0	120
12	SNAREs in Mammalian Sperm: Possible Implications for Fertilization. Developmental Biology, 2000, 223, 54-69.	0.9	115
13	The biology of cortical granules. International Review of Cytology, 2001, 209, 117-206.	6.2	111
14	The Regulation of Oocyte Maturation. Current Topics in Developmental Biology, 2003, 58, 53-110.	1.0	108
15	Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. Developmental Biology, 2006, 300, 406-415.	0.9	104
16	Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. Developmental Biology, 2008, 314, 276-286.	0.9	101
17	Flipping the switch: How a sperm activates the egg at fertilization. Developmental Dynamics, 2007, 236, 2027-2038.	0.8	91
18	The Major Yolk Protein in Sea Urchins Is a Transferrin-like, Iron Binding Protein. Developmental Biology, 2002, 245, 1-12.	0.9	90

#	Article	IF	CITATIONS
19	Membrane Trafficking Machinery Components Associated with the Mammalian Acrosome during Spermiogenesis. Experimental Cell Research, 2001, 267, 45-60.	1.2	89
20	Members of the SNARE hypothesis are associated with cortical granule exocytosis in the sea urchin egg. Molecular Reproduction and Development, 1997, 48, 106-118.	1.0	88
21	Phylogenomic Analyses of Echinodermata Support the Sister Groups of Asterozoa and Echinozoa. PLoS ONE, 2015, 10, e0119627.	1.1	87
22	Versatile Germline Genes. Science, 2010, 329, 640-641.	6.0	80
23	Small micromeres contribute to the germline in the sea urchin. Development (Cambridge), 2011, 138, 237-243.	1.2	78
24	The Golgi Apparatus Segregates from the Lysosomal/Acrosomal Vesicle during Rhesus Spermiogenesis: Structural Alterations. Developmental Biology, 2000, 219, 334-349.	0.9	76
25	Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. Development (Cambridge), 2002, 129, 4315-4325.	1.2	76
26	A Molecular Analysis of Hyalin—A Substrate for Cell Adhesion in the Hyaline Layer of the Sea Urchin Embryo. Developmental Biology, 1998, 193, 115-126.	0.9	75
27	Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Developmental Biology, 2010, 337, 220-232.	0.9	70
28	ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Human Reproduction, 2000, 15, 2610-2620.	0.4	69
29	Membrane Hemifusion Is a Stable Intermediate of Exocytosis. Developmental Cell, 2007, 12, 653-659.	3.1	69
30	How to make an egg: transcriptional regulation in oocytes. Differentiation, 2005, 73, 1-17.	1.0	68
31	DEAD-box helicases: Posttranslational regulation and function. Biochemical and Biophysical Research Communications, 2010, 395, 1-6.	1.0	65
32	Syntaxin Is Required for Cell Division. Molecular Biology of the Cell, 1999, 10, 2735-2743.	0.9	64
33	Regulatory elements from the related spec genes of Strongylocentrotus purpuratus yield different spatial patterns with a lacZ reporter gene. Developmental Biology, 1990, 142, 346-359.	0.9	62
34	Ca2+ Signaling Occurs via Second Messenger Release from Intraorganelle Synthesis Sites. Current Biology, 2008, 18, 1612-1618.	1.8	61
35	Oogenesis: Single cell development and differentiation. Developmental Biology, 2006, 300, 385-405.	0.9	55
36	Select microRNAs are essential for early development in the sea urchin. Developmental Biology, 2012, 362, 104-113.	0.9	55

3

#	Article	IF	CITATIONS
37	Apoptosis in sea urchin oocytes, eggs, and early embryos. Molecular Reproduction and Development, 2001, 60, 553-561.	1.0	54
38	A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Developmental Biology, 2006, 300, 416-433.	0.9	53
39	The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin. Development (Cambridge), 2011, 138, 2217-2222.	1.2	53
40	Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis. Developmental Biology, 2011, 349, 440-450.	0.9	51
41	Sea urchin ovoperoxidase: oocyte-specific member of a heme-dependent peroxidase superfamily that functions in the block to polyspermy. Mechanisms of Development, 1998, 70, 77-89.	1.7	50
42	The multiple hats of Vasa: Its functions in the germline and in cell cycle progression. Molecular Reproduction and Development, 2011, 78, 861-867.	1.0	49
43	Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis. Developmental Biology, 1991, 148, 261-272.	0.9	48
44	Essential elements for translation: the germline factor Vasa functions broadly in somatic cells. Development (Cambridge), 2015, 142, 1960-1970.	1.2	48
45	Calcium-triggered Membrane Fusion Proceeds Independently of Specific Presynaptic Proteins. Journal of Biological Chemistry, 2003, 278, 24251-24254.	1.6	47
46	In the beginning… Animal fertilization and sea urchin development. Developmental Biology, 2006, 300, 15-26.	0.9	47
47	The Transcriptome of a Human Polar Body Accurately Reflects Its Sibling Oocyte. Journal of Biological Chemistry, 2011, 286, 40743-40749.	1.6	47
48	Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus(Echinodermata: Echinoidea). BMC Developmental Biology, 2012, 12, 14.	2.1	45
49	Cyclin B synthesis is required for sea urchin oocyte maturation. Developmental Biology, 2003, 256, 258-275.	0.9	43
50	Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin. Development (Cambridge), 2012, 139, 3786-3794.	1.2	43
51	rab3 Mediates Cortical Granule Exocytosis in the Sea Urchin Egg. Developmental Biology, 1998, 203, 334-344.	0.9	42
52	The Cortical Granule Serine Protease CGSP1 of the Sea Urchin, Strongylocentrotus purpuratus, Is Autocatalytic and Contains a Low-Density Lipoprotein Receptor-like Domain. Developmental Biology, 1999, 211, 1-10.	0.9	40
53	Polar bodies—more a lack of understanding than a lack of respect. Molecular Reproduction and Development, 2011, 78, 3-8.	1.0	39
54	Myosin heavy chain accumulates in dissimilar cell types of the macromere lineage in the sea urchin embryo. Developmental Biology, 1990, 140, 447-454.	0.9	38

#	Article	IF	CITATIONS
55	Germline factor DDX 4 functions in bloodâ€derived cancer cell phenotypes. Cancer Science, 2017, 108, 1612-1619.	1.7	37
56	Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA. Developmental Biology, 1989, 136, 526-536.	0.9	36
57	A single cell RNA sequencing resource for early sea urchin development. Development (Cambridge), 2020, 147, .	1.2	36
58	Regulation of dynamic pigment cell states at single-cell resolution. ELife, 2020, 9, .	2.8	36
59	The biology of the germ line in echinoderms. Molecular Reproduction and Development, 2014, 81, 679-711.	1.0	34
60	Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Communications Biology, 2020, 3, 371.	2.0	34
61	A Protein of the Sea Urchin Cortical Granules Is Targeted to the Fertilization Envelope and Contains an LDL-Receptor-like Motif. Developmental Biology, 1995, 167, 388-397.	0.9	32
62	Direct molecular interaction of a conserved yolk granule protein in sea urchins. Development Growth and Differentiation, 2000, 42, 507-517.	0.6	32
63	Selective transport and packaging of the major yolk protein in the sea urchin. Developmental Biology, 2003, 261, 353-370.	0.9	32
64	Selective accumulation of germâ€line associated gene products in early development of the sea star and distinct differences from germâ€line development in the sea urchin. Developmental Dynamics, 2014, 243, 568-587.	0.8	32
65	Sea Star Wasting Disease in Asterias forbesi along the Atlantic Coast of North America. PLoS ONE, 2017, 12, e0188523.	1.1	32
66	Cell surface changes in the egg at fertilization. Molecular Reproduction and Development, 2009, 76, 942-953.	1.0	31
67	Deadenylase depletion protects inherited mRNAs in primordial germ cells. Development (Cambridge), 2014, 141, 3134-3142.	1.2	31
68	Transient translational quiescence in primordial germ cells. Development (Cambridge), 2017, 144, 1201-1210.	1.2	30
69	Lessons for inductive germline determination. Molecular Reproduction and Development, 2013, 80, 590-609.	1.0	29
70	Albinism as a visual, in vivo guide for CRISPR/Cas9 functionality in the sea urchin embryo. Molecular Reproduction and Development, 2016, 83, 1046-1047.	1.0	29
71	Reactive oxygen species and Udx1 during early sea urchin development. Developmental Biology, 2005, 288, 317-333.	0.9	28
72	Free-radical crosslinking of specific proteins alters the function of the egg extracellular matrix at fertilization. Development (Cambridge), 2008, 135, 431-440.	1.2	28

#	Article	IF	CITATIONS
73	Use of Sea Stars to Study Basic Reproductive Processes. Systems Biology in Reproductive Medicine, 2010, 56, 236-245.	1.0	28
74	Simple perfusion apparatus for manipulation, tracking, and study ofÂoocytes and embryos. Fertility and Sterility, 2015, 103, 281-290.e5.	0.5	28
75	Molecular Characterization and Expression Patterns of a B-Type Nuclear Lamin during Sea Urchin Embryogenesis. Developmental Biology, 1995, 168, 464-478.	0.9	26
76	Major components of a sea urchin block to polyspermy are structurally and functionally conserved. Evolution & Development, 2004, 6, 134-153.	1.1	26
77	The 3′UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin. Developmental Biology, 2013, 377, 275-283.	0.9	26
78	An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis. Developmental Biology, 2016, 415, 24-32.	0.9	26
79	Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition. Scientific Reports, 2020, 10, 1973.	1.6	26
80	Î ² Î ³ subunits of heterotrimeric G-proteins contribute to Ca2+ release at fertilization in the sea urchin. Journal of Cell Science, 2004, 117, 5995-6005.	1.2	25
81	Regulated Proteolysis by Cortical Granule Serine Protease 1 at Fertilization. Molecular Biology of the Cell, 2004, 15, 2084-2092.	0.9	25
82	Migration of sea urchin primordial germ cells. Developmental Dynamics, 2014, 243, 917-927.	0.8	25
83	Single nucleotide editing without DNA cleavage using CRISPR/Cas9â€deaminase in the sea urchin embryo. Developmental Dynamics, 2017, 246, 1036-1046.	0.8	25
84	Construction and characterization of metal ion-containing DNA nanowires for synthetic biology and nanotechnology. Scientific Reports, 2019, 9, 6942.	1.6	25
85	Endoderm Differentiationin Vitroldentifies a Transitional Period for Endoderm Ontogeny in the Sea Urchin Embryo. Developmental Biology, 1996, 175, 57-65.	0.9	24
86	How to grow a gut: ontogeny of the endoderm in the sea urchin embryo. BioEssays, 1999, 21, 459-471.	1.2	24
87	SFE1, a Constituent of the Fertilization Envelope in the Sea Urchin Is Made by Oocytes and Contains Low-Density Lipoprotein-Receptor-Like Repeats1. Biology of Reproduction, 2000, 63, 1706-1712.	1.2	24
88	Multidrug-resistant transport activity protects oocytes from chemotherapeutic agents and changes during oocyte maturation. Fertility and Sterility, 2013, 100, 1428-1435.e7.	0.5	24
89	Developmental distribution of a cell surface glycoprotein in the sea urchin Strongylocentrotus purpuratus. Developmental Biology, 1988, 129, 339-349.	0.9	23
90	Cyclin E and Its Associated cdk Activity Do Not Cycle during Early Embryogenesis of the Sea Urchin. Developmental Biology, 2001, 234, 425-440.	0.9	23

#	Article	IF	CITATIONS
91	Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin. Molecular Reproduction and Development, 2006, 73, 895-905.	1.0	23
92	Calcium pathway machinery at fertilization in echinoderms. Cell Calcium, 2013, 53, 16-23.	1.1	23
93	Diversity in the fertilization envelopes of echinoderms. Evolution & Development, 2013, 15, 28-40.	1.1	23
94	Proteolytic cleavage of the cell surface protein p160 is required for detachment of the fertilization envelope in the sea urchin. Developmental Biology, 2004, 272, 191-202.	0.9	22
95	The histamine H1 receptor activates the nitric oxide pathway at fertilization. Molecular Reproduction and Development, 2006, 73, 1550-1563.	1.0	22
96	Genes involved in the RNA interference pathway are differentially expressed during sea urchin development. Developmental Dynamics, 2007, 236, 3180-3190.	0.8	22
97	An evolutionary transition of <i>vasa</i> regulation in echinoderms. Evolution & Development, 2009, 11, 560-573.	1.1	22
98	Origin and development of the germ line in sea stars. Genesis, 2014, 52, 367-377.	0.8	22
99	Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reproductive Toxicology, 2017, 69, 121-131.	1.3	22
100	Methodology for Whole Mount and Fluorescent RNA In Situ Hybridization in Echinoderms: Single, Double, and Beyond. Methods in Molecular Biology, 2021, 2219, 195-216.	0.4	22
101	Cyclin D and cdk4 Are Required for Normal Development beyond the Blastula Stage in Sea Urchin Embryos. Molecular and Cellular Biology, 2002, 22, 4863-4875.	1.1	21
102	A cortical granule-specific enzyme, B-1,3-glucanase, in sea urchin eggs. Gamete Research, 1987, 18, 339-348.	1.7	20
103	Structure and expression of the polyubiquitin gene in sea urchin embryos. Molecular Reproduction and Development, 1991, 28, 111-118.	1.0	20
104	Germ Line Versus Soma in the Transition from Egg to Embryo. Current Topics in Developmental Biology, 2015, 113, 149-190.	1.0	20
105	The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification. Evolution & Development, 2016, 18, 267-278.	1.1	20
106	Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways. Developmental Biology, 2019, 452, 34-42.	0.9	20
107	Bindin is essential for fertilization in the sea urchin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109636118.	3.3	20
108	The Major Yolk Protein of Sea Urchins Is Endocytosed by a Dynamin-Dependent Mechanism1. Biology of Reproduction, 2004, 71, 705-713.	1.2	19

#	Article	IF	CITATIONS
109	Detection and quantification of mRNA in single human polar bodies: a minimally invasive test of gene expression during oogenesis. Molecular Human Reproduction, 2010, 16, 938-943.	1.3	19
110	Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin. Developmental Biology, 2016, 418, 146-156.	0.9	19
111	Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Nature Communications, 2019, 10, 3779.	5.8	19
112	Regulatory contribution of heterotrimeric G-proteins to oocyte maturation in the sea urchin. Mechanisms of Development, 2004, 121, 247-259.	1.7	18
113	The Invertebrate Deuterostomes: An Introduction to Their Phylogeny, Reproduction, Development, and Genomics. Methods in Cell Biology, 2004, 74, 1-13.	0.5	18
114	Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. Development (Cambridge), 2018, 145, .	1.2	18
115	Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. Development (Cambridge), 2002, 129, 4315-25.	1.2	18
116	Piwi regulates Vasa accumulation during embryogenesis in the sea urchin. Developmental Dynamics, 2014, 243, 451-458.	0.8	17
117	Isolation and Molecular Identification of Lactic Acid Bacteria Using 16s rRNA Genes from FermentedTeff(Eragrostis tef(Zucc.)) Dough. International Journal of Food Science, 2018, 2018, 1-7.	0.9	17
118	These Colors Don't Run: Regulation of Pigment—Biosynthesis in Echinoderms. Results and Problems in Cell Differentiation, 2018, 65, 515-525.	0.2	17
119	A rab3 homolog in sea urchin functions in cell division. FASEB Journal, 2000, 14, 1559-1566.	0.2	16
120	Rendezvin: An Essential Gene Encoding Independent, Differentially Secreted Egg Proteins That Organize the Fertilization Envelope Proteome after Self-Association. Molecular Biology of the Cell, 2006, 17, 5241-5252.	0.9	16
121	Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mechanisms of Development, 2016, 142, 10-21.	1.7	16
122	Transient, Localized Accumulation of α-Spectrin during Sea Urchin Morphogenesis. Developmental Biology, 1993, 155, 161-171.	0.9	15
123	A Rho-signaling pathway mediates cortical granule translocation in the sea urchin oocyte. Mechanisms of Development, 2004, 121, 225-235.	1.7	15
124	Extracellular matrix modifications at fertilization: regulation of dityrosine crosslinking by transamidation. Development (Cambridge), 2009, 136, 1835-1847.	1.2	15
125	Two-pore channels function in calcium regulation in sea star oocytes and embryos. Development (Cambridge), 2014, 141, 4598-4609.	1.2	15
126	CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Developmental Biology, 2021, 472, 85-97.	0.9	15

#	Article	IF	CITATIONS
127	Single-cell transcriptomics reveals lasting changes in the lung cellular landscape into adulthood after neonatal hyperoxic exposure. Redox Biology, 2021, 48, 102091.	3.9	15
128	A rab3 homolog in sea urchin functions in cell division. FASEB Journal, 2000, 14, 1559-1566.	0.2	15
129	Syntaxin, VAMP, and Rab3 are selectively expressed during sea urchin embryogenesis. Molecular Reproduction and Development, 2001, 58, 22-29.	1.0	14
130	Exogenous RNA is selectively retained in the small micromeres during sea urchin embryogenesis. Molecular Reproduction and Development, 2010, 77, 836-836.	1.0	14
131	The forkhead transcription factor FoxY regulates Nanos. Molecular Reproduction and Development, 2012, 79, 680-688.	1.0	14
132	Dysferlin is essential for endocytosis in the sea star oocyte. Developmental Biology, 2014, 388, 94-102.	0.9	14
133	The double-edged sword of the mammalian oocyte – advantages, drawbacks and approaches for basic and clinical analysis at the single cell level. Molecular Human Reproduction, 2016, 22, 200-207.	1.3	14
134	Single cell RNAâ€seq in the sea urchin embryo show marked cellâ€ŧype specificity in the Delta/Notch pathway. Molecular Reproduction and Development, 2019, 86, 931-934.	1.0	14
135	CRISPR/Cas9-mediated genome editing in sea urchins. Methods in Cell Biology, 2019, 151, 305-321.	0.5	14
136	A spatially restricted molecule of the extracellular matrix is contributed both maternally and zygotically in the sea urchin embryo. Development Growth and Differentiation, 1995, 37, 517-527.	0.6	13
137	A diversity of enzymes involved in the regulation of reversible tyrosine phosphorylation in sea urchin eggs and embryos. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 110, 493-502.	0.7	13
138	Activator of G-protein signaling in asymmetric cell divisions of the sea urchin embryo. Development Growth and Differentiation, 2006, 48, 549-557.	0.6	13
139	Retention of exogenous mRNAs selectively in the germ cells of the sea urchin requires only a 5′-cap and a 3′-UTR. Molecular Reproduction and Development, 2013, 80, 561-569.	1.0	13
140	Dysfunctional MDR-1 disrupts mitochondrial homeostasis in the oocyte and ovary. Scientific Reports, 2019, 9, 9616.	1.6	12
141	A conserved node in the regulation of Vasa between an induced and an inherited program of primordial germ cell specification. Developmental Biology, 2022, 482, 28-33.	0.9	12
142	Isolation of Organelles and Components from Sea Urchin Eggs and Embryos. Methods in Cell Biology, 2004, 74, 491-522.	0.5	11
143	Obtaining and Handling Echinoderm Oocytes. Methods in Cell Biology, 2004, 74, 87-114.	0.5	11
144	Every which way—nanos gene regulation in echinoderms. Genesis, 2014, 52, 279-286.	0.8	11

#	Article	IF	CITATIONS
145	Molecular Characterization of Fermenting Yeast Species from Fermented <i> Teff</i> Dough during Preparation of <i> Injera</i> Using ITS DNA Sequence. International Journal of Food Science, 2019, 2019, 1-7.	0.9	11
146	Selective expression of a sec1/munc18 member in sea urchin eggs and embryos. Gene Expression Patterns, 2004, 4, 645-657.	0.3	10
147	Isolating Specific Embryonic Cells of the Sea Urchin by FACS. Methods in Molecular Biology, 2014, 1128, 187-196.	0.4	10
148	Nitrogen mustard exposure perturbs oocyte mitochondrial physiology and alters reproductive outcomes. Reproductive Toxicology, 2018, 82, 80-87.	1.3	10
149	Ovarian hormones modulate multidrug resistance transporters in the ovary. Contraception and Reproductive Medicine, 2018, 3, 26.	0.7	9
150	Molecular identification and performance evaluation of wild yeasts from different Ethiopian fermented products. Journal of Food Science and Technology, 2020, 57, 3436-3444.	1.4	9
151	The surface of the sea urchin embryo at gastrulation: a molecular mosaic. Trends in Genetics, 1985, 1, 12-16.	2.9	8
152	Lineage-specific expansions provide genomic complexity among sea urchin GTPases. Developmental Biology, 2006, 300, 165-179.	0.9	8
153	Germ Line Mechanics—And Unfinished Business. Current Topics in Developmental Biology, 2016, 117, 553-566.	1.0	8
154	A quiet space during rush hour: Quiescence in primordial germ cells. Stem Cell Research, 2017, 25, 296-299.	0.3	8
155	Identifying gene expression from single cells to single genes. Methods in Cell Biology, 2019, 151, 127-158.	0.5	8
156	Unscrambling the oocyte and the egg: clarifying terminology of the female gamete in mammals. Molecular Human Reproduction, 2020, 26, 797-800.	1.3	8
157	Somatic cell conversion to a germ cell lineage: A violation or a revelation?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 666-679.	0.6	8
158	Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes. Current Biology, 2021, 31, 5633-5641.e4.	1.8	8
159	A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos. Developmental Biology, 2022, 483, 128-142.	0.9	8
160	The TATA Binding Protein in the Sea Urchin Embryo Is Maternally Derived. Developmental Biology, 1998, 204, 293-304.	0.9	6
161	Transcriptome variance in single oocytes within, and between, genotypes. Molecular Reproduction and Development, 2012, 79, 502-503.	1.0	6
162	Methods to label, isolate, and image sea urchin small micromeres, the primordial germ cells (PGCs). Methods in Cell Biology, 2019, 150, 269-292.	0.5	6

#	Article	IF	CITATIONS
163	The many faces of egg activation at fertilization. Signal Transduction, 2007, 7, 118-141.	0.7	5
164	FRAP Analysis of Secretory Granule Lipids and Proteins in the Sea Urchin Egg. Methods in Molecular Biology, 2008, 440, 61-76.	0.4	5
165	Meiotic gene expression initiates during larval development in the sea urchin. Developmental Dynamics, 2013, 242, 155-163.	0.8	5
166	Complexity of Yolk Proteins and Their Dynamics in the Sea Star <i>Patiria miniata</i> . Biological Bulletin, 2016, 230, 209-219.	0.7	5
167	Sperm lacking Bindin are infertile but are otherwise indistinguishable from wildtype sperm. Scientific Reports, 2021, 11, 21583.	1.6	5
168	T'is a chilly season for reproduction. Molecular Reproduction and Development, 2017, 84, 1-1.	1.0	4
169	In silico determination of nitrogen metabolism in microbes from extreme conditions using metagenomics. Archives of Microbiology, 2021, 203, 2521-2540.	1.0	4
170	Polycomb group gene expression in the sea urchin. Developmental Dynamics, 2008, 237, 1851-1861.	0.8	3
171	Detection of oocyte mRNA in starfish polar bodies. Molecular Reproduction and Development, 2010, 77, 386-386.	1.0	3
172	Conservation of sequence and function in fertilization of the cortical granule serine protease in echinoderms. Biochemical and Biophysical Research Communications, 2014, 450, 1135-1141.	1.0	3
173	The milk line ―where mammary gland meets mathematics. Molecular Reproduction and Development, 2016, 83, 1-1.	1.0	3
174	Protein kinase A activity leads to the extension of the acrosomal process in starfish sperm. Molecular Reproduction and Development, 2017, 84, 614-625.	1.0	3
175	Regulation of the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos. , 2005, , 77-100.		3
176	Prediction of Genes That Function in Methanogenesis and CO2 Pathways in Extremophiles. Microorganisms, 2021, 9, 2211.	1.6	3
177	Roles for focal adhesion kinase (FAK) in blastomere abscission and vesicle trafficking during cleavage in the sea urchin embryo. Mechanisms of Development, 2013, 130, 290-303.	1.7	2
178	Protein degradation machinery is present broadly during early development in the sea urchin. Gene Expression Patterns, 2014, 15, 135-141.	0.3	2
179	Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Developmental Biology, 2021, 478, 13-24.	0.9	2
180	Concordance and interaction of guanine nucleotide dissociation inhibitor (RhoGDI) with RhoA in oogenesis and early development of the sea urchin. Development Growth and Differentiation, 2011, 53, 427-439.	0.6	1

#	Article	IF	CITATIONS
181	Rapid detection and quantification of specific proteins by immunodepletion and microfluidic separation. Biotechnology Journal, 2012, 7, 1008-1013.	1.8	1
182	Broad functions for the "germâ€line factor―vasa. Molecular Reproduction and Development, 2015, 82, 405-405.	1.0	1
183	When one is (more than) enough! The singular ovary in birds…. Molecular Reproduction and Development, 2016, 83, 271-271.	1.0	1
184	Reproduction in the extremes. Molecular Reproduction and Development, 2016, 83, 89-89.	1.0	1
185	Post-transcriptional regulation of factors important for the germ line. Current Topics in Developmental Biology, 2022, 146, 49-78.	1.0	1
186	Every sperm – and germ cell protocol – is sacred. Development (Cambridge), 2005, 132, 5127-5128.	1.2	0
187	From the Editorâ€in hief. Molecular Reproduction and Development, 2009, 76, NA.	1.0	0
188	VISIONS: the art of science. Molecular Reproduction and Development, 2010, 77, 473-473.	1.0	0
189	John Morrill: Scientist, Educator, Friend (Nov. 20, 1929 - Aug. 9, 2010). Molecular Reproduction and Development, 2010, 77, n/a-n/a.	1.0	0
190	Histamine receptor regulation at fertilization. Molecular Reproduction and Development, 2012, 79, 237-237.	1.0	0
191	The anatomy of transcription: Oscar Lee Miller (April 12, 1925–January 28, 2012). Molecular Reproduction and Development, 2012, 79, Fm i.	1.0	0
192	George Nicholas Papanicolaou: (May 13, 1883 ―February 18, 1962). Molecular Reproduction and Development, 2013, 80, Fm i.	1.0	0
193	Migration of sea urchin primordial germ cells. Developmental Dynamics, 2014, 243, C1.	0.8	0
194	Long live reproductive diversity… and the marvelous monotremes. Molecular Reproduction and Development, 2014, 81, fmi-fmi.	1.0	0
195	Picking the right tool for the job-Phosphoproteomics of egg activation. Proteomics, 2015, 15, 3925-3927.	1.3	0
196	The germ line begins as a single cluster of cells in the pentaâ€radial juvenile starfish. Molecular Reproduction and Development, 2015, 82, 821-821.	1.0	0
197	Well, at least it is better than death…. Molecular Reproduction and Development, 2016, 83, 371-371.	1.0	0
198	Toxic embryos? Oh my… Molecular Reproduction and Development, 2016, 83, 1041-1041.	1.0	0

#	Article	IF	CITATIONS
199	Now that is a game changer: The entire reproductive cycle of an oocyte in a dish. Molecular Reproduction and Development, 2016, 83, 939-939.	1.0	0
200	To the extremes and beyond… Now those are talented mammary glands!. Molecular Reproduction and Development, 2016, 83, 465-465.	1.0	0
201	I did not see that coming! It is more than bugs in the bagina. Molecular Reproduction and Development, 2016, 83, 571-571.	1.0	Ο
202	I can see it when I believe it ―or at least define it. Molecular Reproduction and Development, 2016, 83, 649-649.	1.0	0
203	I always wonderedâ \in $ $. Molecular Reproduction and Development, 2016, 83, 743-743.	1.0	0
204	The morphogenesis of words … it happens in science too!. Molecular Reproduction and Development, 2016, 83, 183-183.	1.0	0
205	Planned parenthood, and female control over reproduction. Molecular Reproduction and Development, 2017, 84, 195-195.	1.0	0
206	The <i>oohs</i> and <i>oompahs</i> are in good company!. Molecular Reproduction and Development, 2017, 84, 1019-1019.	1.0	0
207	Echinodermata. , 2018, , 533-545.		0
208	Trapping, tagging and tracking: Tools for the study of proteins during early development of the sea urchin. Methods in Cell Biology, 2019, 151, 283-304.	0.5	0
209	Do I menstruate or "estruate�—Is this just a potato, potatoe thing?. Molecular Reproduction and Development, 2020, 87, 737-738.	1.0	0
210	William H. Klein 1946–2021. Developmental Biology, 2021, 477, 35-36.	0.9	0