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47 The Transcriptome of a Human Polar Body Accurately Reflects Its Sibling Oocyte. Journal of Biological
Chemistry, 2011, 286, 40743-40749. 1.6 47
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62 Direct molecular interaction of a conserved yolk granule protein in sea urchins. Development
Growth and Differentiation, 2000, 42, 507-517. 0.6 32
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