Jordan S Farrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2974117/publications.pdf

Version: 2024-02-01

		840776	996975
15	586	11	15
papers	citations	h-index	g-index
19	19	19	802
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent. ELife, $2016, 5, .$	6.0	96
2	A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nature Biotechnology, 2022, 40, 787-798.	17.5	84
3	Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizureâ€induced brain abnormalities and behavioral dysfunction. Epilepsia, 2017, 58, 1493-1501.	5.1	72
4	Alternating sources of perisomatic inhibition during behavior. Neuron, 2021, 109, 997-1012.e9.	8.1	67
5	Neurodegeneration and Pathology in Epilepsy: Clinical and Basic Perspectives. Advances in Neurobiology, 2017, 15, 317-334.	1.8	57
6	Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks. Neuron, 2019, 101, 1016-1028.	8.1	43
7	InÂvivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron, 2021, 109, 2398-2403.e4.	8.1	38
8	Supramammillary regulation of locomotion and hippocampal activity. Science, 2021, 374, 1492-1496.	12.6	29
9	Ripple-selective GABAergic projection cells in the hippocampus. Neuron, 2022, 110, 1959-1977.e9.	8.1	24
10	HCN channels segregate stimulationâ€evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents. Journal of Physiology, 2017, 595, 247-263.	2.9	16
11	Fast oxygen dynamics as a potential biomarker for epilepsy. Scientific Reports, 2018, 8, 17935.	3.3	16
12	In vivo assessment of mechanisms underlying the neurovascular basis of postictal amnesia. Scientific Reports, 2020, 10, 14992.	3.3	16
13	Dynamic oxygen changes during status epilepticus and subsequent endogenous kindling. Epilepsia, 2020, 61, 1515-1527.	5.1	9
14	Plants come to mind: phytocannabinoids, endocannabinoids and the control of seizures. Addiction, 2019, 114, 1343-1345.	3.3	2
15	Quantitative T2 MRI is predictive of neurodegeneration following organophosphate exposure in a rat model. Scientific Reports, 2020, 10, 13007.	3.3	1