
Julian A Pearce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972449/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25, 956-983.	2.8	6,796
2	Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 1973, 19, 290-300.	4.4	2,955
3	Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 2008, 100, 14-48.	1.4	2,568
4	Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions To Mineralogy and Petrology, 1979, 69, 33-47.	3.1	2,414
5	Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 1995, 23, 251-285.	11.0	2,292
6	Sources and settings of granitic rocks. Episodes, 1996, 19, 120-125.	1.2	1,289
7	Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 2000, 102, 67-95.	2.1	890
8	Geochemical characteristics of collision-zone magmatism. Geological Society Special Publication, 1986, 19, 67-81.	1.3	822
9	Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. Journal of Petrology, 2007, 48, 2341-2357.	2.8	688
10	Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 1990, 44, 189-229.	2.1	623
11	Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	609
12	Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions To Mineralogy and Petrology, 2000, 139, 36-53.	3.1	592
13	Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 1975, 25, 41-67.	2.2	523
14	Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization Beneath the South Sandwich Island Arc. Journal of Petrology, 1995, 36, 1073-1109.	2.8	425
15	Trace element models for mantle melting: application to volcanic arc petrogenesis. Geological Society Special Publication, 1993, 76, 373-403.	1.3	380
16	238Uî—,230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica Et Cosmochimica Acta, 1997, 61, 4855-4884.	3.9	355
17	Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions To Mineralogy and Petrology, 1977, 63, 149-160.	3.1	330
18	Origin of back-arc basin magmas: Trace element and isotope perspectives. Geophysical Monograph Series, 2006, , 63-86.	0.1	195

JULIAN A PEARCE

#	Article	IF	CITATIONS
19	Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth and Planetary Science Letters, 2019, 506, 520-529.	4.4	148
20	Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review, 2017, 59, 1439-1450.	2.1	145
21	Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids. Earth and Planetary Science Letters, 2002, 202, 361-377.	4.4	142
22	Sr-Nd-Pb-Hf Isotope Results from ODP Leg 187: Evidence for Mantle Dynamics of the Australian-Antarctic Discordance and Origin of the Indian MORB Source. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-35.	2.5	138
23	Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–Felll systematics in chrome–spinel. Chemical Geology, 2009, 261, 199-216.	3.3	137
24	Supra-subduction zone ophiolites: The search for modern analogues. , 2003, , .		136
25	Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics. , 2019, 15, 1008-1037.		121
26	Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity. Geological Society Special Publication, 1994, 81, 53-75.	1.3	119
27	Petrogenetic modelling of in situ fractional crystallization in the zoned Loch Doon pluton, Scotland. Contributions To Mineralogy and Petrology, 1981, 78, 196-207.	3.1	113
28	Magmatic Response to Subduction Initiation: Part 1. Foreâ€arc Basalts of the Izuâ€Bonin Arc From IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 2019, 20, 314-338.	2.5	113
29	Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 1998, 39, 1577-1618.	2.8	96
30	U-series Isotope Data on Lau Basin Glasses: the Role of Subduction-related Fluids during Melt Generation in Back-arc Basins. Journal of Petrology, 2001, 42, 1449-1470.	2.8	94
31	CareÃ ³ n ophiolite, NW Spain: Suprasubduction zone setting for the youngest Rheic Ocean floor. Geology, 2007, 35, 53.	4.4	93
32	Radiogenic isotopes document the start of subduction in the Western Pacific. Earth and Planetary Science Letters, 2019, 518, 197-210.	4.4	90
33	Causes of spatial compositional variations in Mariana arc lavas: Trace element evidence. Island Arc, 1998, 7, 479-495.	1.1	78
34	Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey. International Journal of Earth Sciences, 2008, 97, 1181-1200.	1.8	74
35	Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: A new adakite subgroup analogous to early Archaean continental crust?. Chemical Geology, 2010, 276, 344-359.	3.3	74
36	Geochemical evidence for the geotectonic setting of early Proterozoic metavolcanic sequences in Lapland. Precambrian Research, 1984, 25, 283-308.	2.7	70

JULIAN A PEARCE

#	Article	IF	CITATIONS
37	A variably enriched mantle wedge and contrasting melt types during arc stages following subduction initiation in Fiji and Tonga, southwest Pacific. Earth and Planetary Science Letters, 2012, 335-336, 180-194.	4.4	66
38	Geochemical Fingerprinting of the Earth's Oldest Rocks. Geology, 2014, 42, 175-176.	4.4	65
39	Hf-Nd isotope variation in Mariana Trough basalts: The importance of "ambient mantle―in the interpretation of subduction zone magmas. Geology, 2012, 40, 539-542.	4.4	64
40	LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos, 2021, 392-393, 106068.	1.4	64
41	Assimilation and partial melting of continental crust: evidence from the mineralogy and geochemistry of autoliths and xenoliths. Lithos, 1983, 16, 185-202.	1.4	60
42	Geochemical Variations in Vanuatu Arc Lavas: the Role of Subducted Material and a Variable Mantle Wedge Composition. Journal of Petrology, 1997, 38, 1331-1358.	2.8	59
43	Do Cenozoic analogues support a plate tectonic origin for Earth's earliest continental crust?. Geology, 2010, 38, 495-498.	4.4	53
44	Magmatic Response to Subduction Initiation, Part II: Boninites and Related Rocks of the Izuâ€Bonin Arc From IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 2021, 22, .	2.5	52
45	Mantle Preconditioning by Melt Extraction during Flow: Theory and Petrogenetic Implications. Journal of Petrology, 2005, 46, 973-997.	2.8	51
46	An expert system for the tectonic characterization of ancient volcanic rocks. Journal of Volcanology and Geothermal Research, 1987, 32, 51-65.	2.1	42
47	How to Create New Subduction Zones: A Global Perspective. Oceanography, 2019, 32, 160-174.	1.0	41
48	Petrogenesis of Igneous Enclaves in Plutonic Rocks of the Central Anatolian Crystalline Complex, Turkey. International Geology Review, 2005, 47, 1011-1034.	2.1	34
49	New insights concerning the influence of water during the formation of podiform chromitite. , 2000, , .		32
50	Magma-crust interactions and magma plumbing in a postcollisional setting: Geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey. , 2006, , .		30
51	Detailed volcanic geology of the MARNOK area, Mid-Atlantic Ridge north of Kane transform. Geological Society Special Publication, 1996, 118, 61-102.	1.3	29
52	Evolution of nascent mantle wedges during subduction initiation: Li-O isotopic evidence from the Luobusa ophiolite, Tibet. Geochimica Et Cosmochimica Acta, 2019, 245, 35-58.	3.9	27
53	Mineral compositions and thermobarometry of basalts and boninites recovered during IODP Expedition 352 to the Bonin forearc. American Mineralogist, 2020, 105, 1490-1507.	1.9	26
54	Ocean floor comes ashore. Nature, 1991, 354, 110-111.	27.8	25

#	Article	IF	CITATIONS
55	Trace Element and Isotope Geochemistry of the Northern and Central Tongan Islands with an Emphasis on the Genesis of High Nb/Ta Signatures at the Northern Volcanoes of Tafahi and Niuatoputapu. Journal of Petrology, 2017, 58, 1073-1106.	2.8	24
56	Magma Source Evolution Following Subduction Initiation: Evidence From the Element Concentrations, Stable Isotope Ratios, and Water Contents of Volcanic Glasses From the Bonin Forearc (IODP Expedition 352). Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009054.	2.5	22
57	Mantle flow, volatiles, slabâ€surface temperatures and melting dynamics in the north Tonga arc–Lau backâ€arc basin. Journal of Geophysical Research, 2012, 117, .	3.3	18
58	Geochemistry of two associated ophiolites from the Cabo Ortegal Complex (Variscan belt of NW) Tj ETQq0 0 0	rgBT /Ovei	rlock 10 Tf 50

58	Geochemistry of two associated opniontes from the Cabo Ortegal Complex (variscan beit of NVV) ij	0.5	17
59	Upper Cenozoic volcanic rocks in the Mariana Forearc recovered from drilling at Ocean Drilling Program Site 781: Implications for forearc magmatism. Journal of Geophysical Research, 1992, 97,	3.3	8

60	Boninites. , 2021, , 113-129.		6
61	Probing the Troodos Ophiolite: IGCPâ€649 Workshop and Field Excursion Held in Agrosâ€Cyprus. Acta Geologica Sinica, 2016, 90, 1041-1044.	1.4	5
62	An element of recycling. Nature, 1992, 360, 629-630.	27.8	2
63	FORE-ARC BASALT TO BONINITE MAGMATISM: CHARACTERIZING THE TRANSITION FROM DECOMPRESSION TO FLUID FLUX MELTING AFTER SUBDUCTION INITIATION. , 2017, , .		2
64	Correction to "Upper Cenozoic volcanic rocks in the Mariana Forearc recovered from drilling at Ocean Drilling Programs site 781: Implications for forearc magmatism―by Michael S. Marlow, Lynn E. Johnson, Julian A. Pearce, Patricia B. Fryer, Leda Beth G. Pickthorn, and Bramley J. Murton. Journal of Geophysical Research, 1993, 98, 16081-16081.	3.3	0