
Neus Agell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2972193/publications.pdf Version: 2024-02-01

NEUS ACELL

#	Article	IF	CITATIONS
1	KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer. Oncogene, 2021, 40, 5730-5740.	5.9	5
2	Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse. Cellular and Molecular Life Sciences, 2020, 77, 735-749.	5.4	13
3	Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 3680.	4.1	9
4	OZF is a Claspinâ€interacting protein essential to maintain the replication fork progression rate under replication stress. FASEB Journal, 2020, 34, 6907-6919.	0.5	5
5	Nucleotide depletion reveals the impaired ribosome biogenesis checkpoint as a barrier against <scp>DNA</scp> damage. EMBO Journal, 2020, 39, e103838.	7.8	24
6	Toward understanding calmodulin plasticity by molecular dynamics. Future Medicinal Chemistry, 2019, 11, 975-991.	2.3	1
7	Modeling and subtleties of K-Ras and Calmodulin interaction. PLoS Computational Biology, 2018, 14, e1006552.	3.2	9
8	Nearâ€ŧetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness. FASEB Journal, 2018, 32, 3502-3517.	0.5	50
9	SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage. PLoS ONE, 2017, 12, e0178925.	2.5	7
10	New origin firing is inhibited by APC/C ^{Cdh1} activation in S-phase after severe replication stress. Nucleic Acids Research, 2016, 44, 4745-4762.	14.5	15
11	Centrosome aberrations in human mammary epithelial cells driven by cooperative interactions between p16INK4a deficiency and telomere-dependent genotoxic stress. Oncotarget, 2015, 6, 28238-28256.	1.8	8
12	Abstract 3031: Replication stress and DNA damage promote genomic instability in near-tetraploid colorectal cancer cells. , 2015, , .		0
13	Phosphorylation at Ser-181 of Oncogenic KRAS Is Required for Tumor Growth. Cancer Research, 2014, 74, 1190-1199.	0.9	54
14	Ribonucleoprotein HNRNPA2B1 Interacts With and Regulates Oncogenic KRAS in Pancreatic Ductal Adenocarcinoma Cells. Gastroenterology, 2014, 147, 882-892.e8.	1.3	56
15	Oncogenic K-Ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. Journal of Cell Science, 2013, 126, 4553-9.	2.0	29
16	The stress-activated protein kinases p38α/β and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Cell Cycle, 2012, 11, 3627-3637.	2.6	31
17	Proteasome Inhibition Reduces Proliferation, Collagen Expression, and Inflammatory Cytokine Production in Nasal Mucosa and Polyp Fibroblasts. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 184-197.	2.5	19
18	p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes. PLoS ONE, 2012, 7, e37759.	2.5	42

#	Article	IF	CITATIONS
19	Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle. Metabolomics, 2012, 8, 454-464.	3.0	25
20	Protective Effect of Structurally Diverse Grape Procyanidin Fractions against UV-Induced Cell Damage and Death. Journal of Agricultural and Food Chemistry, 2011, 59, 4489-4495.	5.2	27
21	CaM interaction and Ser181 phosphorylation as new K-Ras signaling modulators. Small GTPases, 2011, 2, 99-103.	1.6	25
22	Nucleolar Disruption Ensures Nuclear Accumulation of p21 upon DNA Damage. Traffic, 2010, 11, 743-755.	2.7	29
23	K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene, 2010, 29, 5911-5922.	5.9	66
24	The transcriptional co-activator PCAF regulates cdk2 activity. Nucleic Acids Research, 2009, 37, 7072-7084.	14.5	33
25	A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. Journal of Cell Biology, 2009, 184, 863-879.	5.2	115
26	Degradation of cyclin A is regulated by acetylation. Oncogene, 2009, 28, 2654-2666.	5.9	52
27	Increased messenger ribonucleic acid expression of the cyclin-dependent kinase inhibitor p27Kip1 in cleavage-stage human embryos exhibiting developmental arrest. Fertility and Sterility, 2008, 89, 1557-1562.	1.0	4
28	Identification of Essential Interacting Elements in K-Ras/Calmodulin Binding and Its Role in K-Ras Localization. Journal of Biological Chemistry, 2008, 283, 10621-10631.	3.4	64
29	Different S/M Checkpoint Responses of Tumor and Non–Tumor Cell Lines to DNA Replication Inhibition. Cancer Research, 2007, 67, 11648-11656.	0.9	30
30	Proteomic analysis of SET-binding proteins. Proteomics, 2007, 7, 578-587.	2.2	22
31	Proteomic analysis of p16 ^{ink4a} â€binding proteins. Proteomics, 2007, 7, 4102-4111.	2.2	31
32	Heterogeneous nuclear ribonucleoprotein A2 is a SET-binding protein and a PP2A inhibitor. Oncogene, 2006, 25, 260-270.	5.9	29
33	Glyceraldehyde 3-phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdk1 activity. Oncogene, 2006, 25, 4033-4042.	5.9	60
34	The Diverging Roles of Calmodulin and PKC in the Regulation of p21 Intracellular Localization. Cell Cycle, 2006, 5, 3-6.	2.6	16
35	Chk1- and Claspin-Dependent but ATR/ATM– and Rad17-Independent DNA Replication Checkpoint Response in HeLa Cells. Cancer Research, 2006, 66, 8672-8679.	0.9	27
36	Binding of Calmodulin to the Carboxy-Terminal Region of p21 Induces Nuclear Accumulation via Inhibition of Protein Kinase C-Mediated Phosphorylation of Ser153. Molecular and Cellular Biology, 2005, 25, 7364-7374.	2.3	39

#	Article	IF	CITATIONS
37	P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene, 2004, 23, 7537-7544.	5.9	44
38	The Structural Plasticity of the C Terminus of p21Cip1 is a Determinant for Target Protein Recognition. ChemBioChem, 2003, 4, 863-869.	2.6	19
39	ATM/ATR-independent inhibition of cyclin B accumulation in response to hydroxyurea in nontransformed cell lines is altered in tumour cell lines. Oncogene, 2003, 22, 8283-8292.	5.9	14
40	The SET Protein Regulates G2/M Transition by Modulating Cyclin B-Cyclin-dependent Kinase 1 Activity. Journal of Biological Chemistry, 2003, 278, 1158-1164.	3.4	127
41	Fermented Wheat Germ Extract Inhibits Glycolysis/Pentose Cycle Enzymes and Induces Apoptosis through Poly(ADP-ribose) Polymerase Activation in Jurkat T-cell Leukemia Tumor Cells. Journal of Biological Chemistry, 2002, 277, 46408-46414.	3.4	89
42	Calmodulin Regulates Intracellular Trafficking of Epidermal Growth Factor Receptor and the MAPK Signaling Pathway. Molecular Biology of the Cell, 2002, 13, 2057-2068.	2.1	73
43	Calmodulin Prevents Activation of Ras by PKC in 3T3 Fibroblasts. Journal of Biological Chemistry, 2002, 277, 37929-37935.	3.4	56
44	Increased expression of the cyclin-dependent kinase inhibitor p27 in cleavage-stage human embryos exhibiting developmental arrest. Molecular Human Reproduction, 2002, 8, 919-922.	2.8	9
45	Identification of the nuclear localization signal of p21cip1 and consequences of its mutation on cell proliferation. FEBS Letters, 2002, 531, 319-323.	2.8	54
46	Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and Calmodulin. Cellular Signalling, 2002, 14, 649-654.	3.6	369
47	The p21Cip1 protein, a cyclin inhibitor, regulates the levels and the intracellular localization of CDC25A in mice regenerating livers. Hepatology, 2002, 35, 1063-1071.	7.3	19
48	A New Bis-Indole, KARs, Induces Selective M Arrest with Specific Spindle Aberration in Neuroblastoma Cell Line SH-SY5Y. Molecular Pharmacology, 2001, 60, 1235-1242.	2.3	18
49	Calmodulin Binds to K-Ras, but Not to H- or N-Ras, and Modulates Its Downstream Signaling. Molecular and Cellular Biology, 2001, 21, 7345-7354.	2.3	185
50	Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. Journal of Cellular Physiology, 2000, 184, 380-384.	4.1	60
51	[Lys61]N-Ras is able to induce full activation and nuclear accumulation of Cdk4 in NIH3T3 cells. Oncogene, 2000, 19, 690-699.	5.9	5
52	Osmotic Stress Regulates the Stability of Cyclin D1 in a p38SAPK2-dependent Manner. Journal of Biological Chemistry, 2000, 275, 35091-35097.	3.4	131
53	Differential association of p21 Cip1 and p27 Kip1 with cyclin E-CDK2 during rat liver regeneration. Journal of Hepatology, 2000, 33, 266-274.	3.7	25
54	Calmodulin Binds to p21Cip1 and Is Involved in the Regulation of Its Nuclear Localization. Journal of Biological Chemistry, 1999, 274, 24445-24448.	3.4	53

#	Article	IF	CITATIONS
55	The Protein SET Regulates the Inhibitory Effect of p21Cip1 on Cyclin E-Cyclin-dependent Kinase 2 Activity. Journal of Biological Chemistry, 1999, 274, 33161-33165.	3.4	78
56	Activation of Cdk4 and Cdk2 during rat liver regeneration is associated with intranuclear rearrangements of cyclin-Cdk complexes. Hepatology, 1999, 29, 385-395.	7.3	61
57	Disruption of the antiproliferative TGF-Î ² signaling pathways in human pancreatic cancer cells. Oncogene, 1998, 17, 1969-1978.	5.9	181
58	New nuclear functions for calmodulin. Cell Calcium, 1998, 23, 115-121.	2.4	48
59	Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. Molecular and Cellular Endocrinology, 1998, 142, 183-189.	3.2	104
60	Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Letters, 1998, 130, 19-27.	7.2	69
61	Different cytokines modulate ubiquitin gene expression in rat skeletal muscle. Cancer Letters, 1998, 133, 83-87.	7.2	98
62	Calmodulin Inhibitor W13 Induces Sustained Activation of ERK2 and Expression of p21. Journal of Biological Chemistry, 1998, 273, 22145-22150.	3.4	57
63	Calmodulin Is Essential for Cyclin-dependent Kinase 4 (Cdk4) Activity and Nuclear Accumulation of Cyclin D1-Cdk4 during G1. Journal of Biological Chemistry, 1998, 273, 33279-33286.	3.4	76
64	TNF Can Directly Induce the Expression of Ubiquitin-Dependent Proteolytic System in Rat Soleus Muscles. Biochemical and Biophysical Research Communications, 1997, 230, 238-241.	2.1	159
65	The Cell Cycle Inhibitor p21CIPIs Phosphorylated by Cyclin A-CDK2 Complexes. Biochemical and Biophysical Research Communications, 1997, 241, 434-438.	2.1	15
66	The ubiquitin system: A role in disease?. , 1997, 17, 139-161.		8
67	Muscle hypercatabolism during cancer cachexia is not reversed by the glucocorticoid receptor antagonist RU38486. Cancer Letters, 1996, 99, 7-14.	7.2	32
68	Putative Nuclear cdk2 Substrates in Normal and Transformed Cells. Biochemical and Biophysical Research Communications, 1996, 219, 560-564.	2.1	3
69	Anti-TNF Treatment Reverts Increased Muscle Ubiquitin Gene Expression in Tumour-Bearing Rats. Biochemical and Biophysical Research Communications, 1996, 221, 653-655.	2.1	69
70	The autoantigen La/SSB is a calmodulinmbinding protein. Cell Calcium, 1996, 20, 493-500.	2.4	13
71	Muscle wasting associated with cancer cachexia is linked to an important activation of the atp-dependent ubiquitin-mediated proteolysis. International Journal of Cancer, 1995, 61, 138-141.	5.1	101
72	Addition of calmodulin antagonists to NRK cells during G1 inhibits proliferating cell nuclear antigen expression. Cell Calcium, 1995, 18, 30-40.	2.4	17

#	Article	IF	CITATIONS
73	Calmodulin Is Involved in the Induction of DNA Polymerases $\hat{I}\pm$ and \hat{I} Activities in Normal Rat Kidney Cells Activated to Proliferate. Biochemical and Biophysical Research Communications, 1995, 217, 566-574.	2.1	9
74	Calmodulin and Calmodulin-Binding Proteins in the Cell Nucleus. Molecular Biology Intelligence Unit, 1995, , 69-111.	0.2	25
75	Role of Calmodulin in the Regulation of Nuclear Functions. Molecular Biology Intelligence Unit, 1995, , 113-138.	0.2	0
76	Nuclear Calcium-Binding Proteins and Their Functions. Molecular Biology Intelligence Unit, 1995, , 37-68.	0.2	0
77	Nuclear Calcium and Its Regulation. Molecular Biology Intelligence Unit, 1995, , 21-35.	0.2	0
78	Expression of calmodulin and calmodulin binding proteins in lymphoblastoid cells. Journal of Cellular Physiology, 1994, 159, 542-550.	4.1	21
79	Calmodulin expression during rat liver regeneration. Hepatology, 1994, 20, 1002-1008.	7.3	13
80	Protein kinase C regulates calmodulin expression in NRK cells activated to proliferate from quiescence. Cell Calcium, 1994, 16, 446-454.	2.4	7
81	Calmodulin and calmodulin-binding proteins in the nucleus. Cell Calcium, 1994, 16, 289-296.	2.4	86
82	Calmodulin Regulates the Expression of CDKS, Cyclins and Replicative Enzymes During Proliferative Activation of Human T Lymphocytes. Biochemical and Biophysical Research Communications, 1994, 200, 306-312.	2.1	31
83	Microsomal Localization of Cyclin A and cdk2 in Proliferating Rat Liver Cells. Biochemical and Biophysical Research Communications, 1994, 201, 1072-1078.	2.1	21
84	Cyclin/cdk2 Complexes in the Nucleus of HeLa Cells. Biochemical and Biophysical Research Communications, 1994, 203, 1527-1534.	2.1	18
85	Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Letters, 1994, 338, 311-318.	2.8	120
86	Calmodulin expression during proliferative activation of human T lymphocytes. Cell Calcium, 1993, 14, 609-618.	2.4	31
87	Tumour necrosis factor-α increases the ubiquitinization of rat skeletal muscle proteins. FEBS Letters, 1993, 323, 211-214.	2.8	125
88	Effect of α1-Adrenergic Blockade on Nucleolar Growth, Chromatin Relaxation, and Histone H1° Content in Regenerating Liver. Experimental Cell Research, 1993, 204, 88-93.	2.6	2
89	Calmodulin regulates DNA polymerase α activity during proliferative activation of NRK cells. Biochemical and Biophysical Research Communications, 1992, 184, 1517-1523.	2.1	40
90	Calcium and calmodulin function in the cell nucleus. BBA - Biomembranes, 1992, 1113, 259-270.	8.0	150

#	Article	IF	CITATIONS
91	Regulation of DNA polymerase α activity by the α1-adrenergic receptors in proliferatively activated rat liver cells. Biochemical and Biophysical Research Communications, 1991, 177, 973-978.	2.1	11
92	Changes in nuclear content of protein conjugate histone H2A-ubiquitin during rooster spermatogenesis. FEBS Letters, 1983, 155, 209-212.	2.8	42