Henry E Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2971440/publications.pdf

Version: 2024-02-01

187 6,410 43 72
papers citations h-index g-index

187 187 187 5989 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Correlating Proton Diffusion in Perovskite Triple-Conducting Oxides with Local and Defect Structure. Chemistry of Materials, 2022, 34, 4785-4794.	6.7	3
2	Detailed structural analysis of amorphous Pd40Cu40P20: Comparison with the metallic glass Pd40Ni40P20 from the viewpoint of glass forming ability. Journal of Non-Crystalline Solids, 2021, 555, 120536.	3.1	5
3	Different Water Networks Confined in Unidirectional Hydrophilic Nanopores and Transitions with Temperature. Journal of Physical Chemistry C, 2021, 125, 14378-14393.	3.1	6
4	Structure and dynamics of aqueous NaCl solutions at high temperatures and pressures. Journal of Chemical Physics, 2021, 155, 194506.	3.0	9
5	From SmOF to SmH _{0.78} OF _{0.22} : H/F Substitution in Oxide Fluorides as a Synthesis Route to Heteroanionic Compounds. Inorganic Chemistry, 2021, 60, 17775-17782.	4.0	2
6	Suppressed-moment 2-k order in the canonical frustrated antiferromagnet Gd2Ti2O7. Npj Quantum Materials, 2021, 6, .	5.2	10
7	The Ba ₃ Mo _{1â^'x} W _x NbO _{8.5} ion conductors: insights into local coordination from X-ray and neutron total scattering. Journal of Materials Chemistry A, 2020, 8, 21227-21240.	10.3	8
8	Structure and properties of densified silica glass: characterizing the order within disorder. NPG Asia Materials, 2020, 12, .	7.9	57
9	Partial structure investigation of the traditional bulk metallic glass <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Pd</mml:mi><mml:mathvariant="normal">P<mml:mn>20</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> . Physical Review B. 2019. 100	nn 3.40 <td>ıml;mn></td>	ıml;mn>
10	A case of multifunctional intermetallic compounds: negative thermal expansion coupling with magnetocaloric effect in (Gd,Ho)(Co,Fe)2. Inorganic Chemistry Frontiers, 2019, 6, 3146-3151.	6.0	6
11	Role of local short-scale correlations in the mechanism of negative magnetization. Physical Review B, 2019, 99, .	3.2	19
12	Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. Science, 2019, 364, 1062-1067.	12.6	120
13	Structure of the Intermediate Phase Glasses GeSe3 and GeSe4: The Deployment of Neutron Diffraction With Isotope Substitution. Frontiers in Materials, 2019, 6, .	2.4	12
14	Pressure induced structural transformations in amorphous MgSiO3 and CaSiO3. Journal of Non-Crystalline Solids: X, 2019, 3, 100024.	1.2	22
15	Adjustable Magnetic Phase Transition Inducing Unusual Zero Thermal Expansion in Cubic RCo ₂ -Based Intermetallic Compounds (R = Rare Earth). Inorganic Chemistry, 2019, 58, 5401-5405.	4.0	19
16	Structural and electronic changes in graphite fluorides as a function of fluorination rate: An XRS, PDF and DFT study. Carbon, 2019, 147, 1-8.	10.3	18
17	Molecular Dynamics and Neutron Scattering Studies of Potassium Chloride in Aqueous Solution. Journal of Physical Chemistry B, 2019, 123, 10807-10813.	2.6	7
18	Neutron scattering study of nickel decorated thermally exfoliated graphite oxide. International Journal of Hydrogen Energy, 2019, 44, 30999-31007.	7.1	5

#	Article	IF	CITATIONS
19	Calcium ions in aqueous solutions: Accurate force field description aided by <i>ab initio</i> molecular dynamics and neutron scattering. Journal of Chemical Physics, 2018, 148, 222813.	3.0	75
20	Local Structure and Lithium Diffusion Pathways in Li ₄ Mn ₂ O ₅ High Capacity Cathode Probed by Total Scattering and XANES. Chemistry of Materials, 2018, 30, 3060-3070.	6.7	19
21	Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system. Royal Society Open Science, 2018, 5, 171401.	2.4	10
22	Understanding Local Structure versus Longâ€Range Structure: The Case of UO ₂ . Chemistry - A European Journal, 2018, 24, 2085-2088.	3.3	3
23	Hydration and Ion Pairing in Aqueous Mg ²⁺ and Zn ²⁺ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2018, 122, 3296-3306.	2.6	75
24	Structure and dynamics of high-temperature strontium aluminosilicate melts. Physical Chemistry Chemical Physics, 2018, 20, 27865-27877.	2.8	18
25	Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies. Journal of Physical Chemistry B, 2018, 122, 9567-9583.	2.6	35
26	Characterization of Oxygen Defect Clusters in UO _{2+<i>x</i>} Using Neutron Scattering and PDF Analysis. Inorganic Chemistry, 2018, 57, 7064-7076.	4.0	11
27	Modelling of glass-like carbon structure and its experimental verification by neutron and X-ray diffraction. Journal of Applied Crystallography, 2017, 50, 36-48.	4.5	46
28	Structure of liquid tricalcium aluminate. Physical Review B, 2017, 95, .	3.2	12
29	The atomic scale structure of saccharose-based carbons. Philosophical Magazine, 2017, 97, 1675-1697.	1.6	7
30	The structure of Y- and La-bearing aluminosilicate glasses and melts: A combined molecular dynamics and diffraction study. Chemical Geology, 2017, 461, 23-33.	3.3	5
31	What Is the Actual Local Crystalline Structure of Uranium Dioxide, UO ₂ ? A New Perspective for the Most Used Nuclear Fuel. Inorganic Chemistry, 2017, 56, 321-326.	4.0	45
32	The atomic scale structure of dahlia-like single wall carbon nanohorns produced by direct vaporization of graphite. Diamond and Related Materials, 2017, 72, 26-31.	3.9	6
33	Evolution of magnetic phases in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SmCrO</mml:mi><mml:mn>3<td>ml3ɔ2n > < /i</td><td>mrakmsub></td></mml:mn></mml:msub></mml:math>	ml 3ɔ2n > < /i	mr ak msub>
34	Changes in the hydration structure of imidazole upon protonation: Neutron scattering and molecular simulations. Journal of Chemical Physics, 2017, 146, .	3.0	14
35	High-pressure neutron diffraction apparatus for investigating the structure of liquids under hydrothermal conditions. High Pressure Research, 2017, 37, 529-544.	1.2	1
36	Optimizing the counting times for sample-in-container scattering experiments. Journal of Applied Crystallography, 2016, 49, 2249-2251.	4.5	9

#	Article	IF	CITATIONS
37	The atomic scale structure of glass-like carbon obtained from fullerene extract via spark plasma sintering. Carbon, 2016, 110, 172-179.	10.3	6
38	Structural Changes in the Local Environment of Uranium Atoms in the Three Phases of U4O9. Inorganic Chemistry, 2016, 55, 7485-7491.	4.0	19
39	Pressure-induced structural changes in the network-forming isostatic glass <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>GeSe</mml:mi><mml:mn>4<td>nn><td>l:msub></td></td></mml:mn></mml:msub></mml:math>	nn> <td>l:msub></td>	l:msub>
40	Neutron diffraction of calcium aluminosilicate glasses and melts. Journal of Non-Crystalline Solids, 2016, 451, 89-93.	3.1	49
41	Structure of Glassy Ag–Ge–Se by Neutron Diffraction with Isotope Substitution. Zeitschrift Fur Physikalische Chemie, 2016, 230, 417-432.	2.8	6
42	From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaOâ^'Al ₂ O ₃ â^'SiO ₂ melts. Journal of Physics Condensed Matter, 2016, 28, 135102.	1.8	9
43	Hydration of Hydroxyl and Amino Groups Examined by Molecular Dynamics and Neutron Scattering. Journal of Physical Chemistry B, 2015, 119, 6357-6365.	2.6	13
44	The atomic scale structure of graphene powder studied by neutron and X-ray diffraction. Journal of Applied Crystallography, 2015, 48, 1429-1436.	4.5	18
45	Structure of the network glass-former ZnCl 2 : From the boiling point to the glass. Journal of Non-Crystalline Solids, 2015, 407, 235-245.	3.1	21
46	High-Pressure Transformation of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi> SiO </mml:mi> </mml:mrow> <mml:mrow> <</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	:mn>2 <td>ıml:mn>112</td>	ıml:mn>112
47	Molecular Dynamics. Physical Review Letters, 2014, 113, 135501. Density-driven structural transformations in a milimating structural transformations in a milimating structural transformations in a milimating structural transformation in a	k ang ml:mi	47
48	Structure of Ba-Ti-Al-O glasses produced by aerodynamic levitation and laser heating. Physical Review B, 2014, 90, .	3.2	12
49	Density-driven defect-mediated network collapse of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">GeSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> glass. Physical Review B. 2014. 90.	3.2	30
50	Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics. Molecular Physics, 2014, 112, 1230-1240.	1.7	48
51	Nanoscale structure and texture of highly anisotropic pyrocarbons revisited with transmission electron microscopy, image processing, neutron diffraction and atomistic modeling. Carbon, 2014, 80, 472-489.	10.3	53
52	Specific Heat of (GeTe) < sub > <i> x < /i > (Sb < sub > 2 < /sub > Te < sub > 3 < /sub >) < sub > 1– <i> x < /i > Phase-Change Materials: The Impact of Disorder and Anharmonicity. Chemistry of Materials, 2014, 26, 2307-2312.</i></i>	6.7	40
53	Joint diffraction and modeling approach to the structure of liquid alumina. Physical Review B, 2013, 87, .	3.2	95
54	Structure of an Amorphous Boron Carbide Film: An Experimental and Computational Approach. Chemistry of Materials, 2013, 25, 2618-2629.	6.7	40

#	Article	IF	CITATIONS
55	Magnetic structure of the metallic triangular antiferromagnet Ag2NiO2. Journal of Physics Condensed Matter, 2013, 25, 286005.	1.8	7
56	Mechanisms of network collapse in GeO ₂ glass: high-pressure neutron diffraction with isotope substitution as arbitrator of competing models. Journal of Physics Condensed Matter, 2012, 24, 502101.	1.8	35
57	The bound coherent neutron scattering lengths of the oxygen isotopes. Journal of Physics Condensed Matter, 2012, 24, 505105.	1.8	9
58	Zeidler <i>etÂal.</i> Reply:. Physical Review Letters, 2012, 108, .	7.8	5
59	Structural Transformations on Vitrification in the Fragile Glass-Forming System <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CaAl</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:msub><mml:mathvariant="bold">O<mml:mn>4</mml:mn></mml:mathvariant="bold"></mml:msub></mml:msub></mml:math> . Physical Review Letters, 2012, 109, 235501.	ni7.8	53
60	Structure and triclustering in Ba-Al-O glass. Physical Review B, 2012, 85, .	3.2	40
61	Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics. Journal of Physics Condensed Matter, 2012, 24, 284126.	1.8	47
62	Rare Earth doped ceria: a combined X-ray and neutron pair distribution function study. Zeitschrift FÃ $\frac{1}{4}$ r Kristallographie, 2012, 227, 272-279.	1.1	26
63	The structure of liquid calcium aluminates as investigated by neutron and high-energy x-ray diffraction in combination with molecular dynamics simulation methods. Journal of Physics Condensed Matter, 2012, 24, 099501.	1.8	4
64	Interplay between non-bridging oxygen, triclusters, and fivefold Al coordination in low silica content calcium aluminosilicate melts. Applied Physics Letters, 2012, 101, .	3.3	87
65	Microstructure of pyrocarbons from pair distribution function analysis using neutron diffraction. Carbon, 2012, 50, 1563-1573.	10.3	30
66	Refinement of the α-U ₄ O ₉ Crystalline Structure: New Insight into the U ₄ O ₉ 3O ₈ Transformation. Inorganic Chemistry, 2011, 50, 6146-6151.	4.0	52
67	The structure of liquid calcium aluminates as investigated using neutron and high energy x-ray diffraction in combination with molecular dynamics simulation methods. Journal of Physics Condensed Matter, 2011, 23, 155101.	1.8	41
68	Structure of praseodymium and neodymium gallate glasses. Journal of Non-Crystalline Solids, 2011, 357, 2511-2515.	3.1	7
69	Aerodynamic levitation and laser heating:. European Physical Journal: Special Topics, 2011, 196, 151-165.	2.6	58
70	Timeâ€ofâ€flight neutron spectroscopy: a new application of aerodynamic sample levitation. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3155-3158.	0.8	8
71	Oxygen as a Site Specific Probe of the Structure of Water and Oxide Materials. Physical Review Letters, 2011, 107, 145501.	7.8	51
72	Structure of eutectic liquids in the Au-Si, Au-Ge, and Ag-Ge binary systems by neutron diffraction. Physical Review B, 2011, 83, .	3.2	44

#	Article	IF	CITATIONS
73	Structure of liquid and glassy <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>ZnCl</mml:mtext></mml:mrow><mml:mrow><mml:ml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:ml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	n> 23.∤ mml:	mr62x/mml:m
74	Structure of <pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <pre>cmml:mrow> <</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	1 > 23./2mml:	mnsex/mml:m
75	Neutron diffraction study of molten calcium aluminates. Journal of Non-Crystalline Solids, 2010, 356, 2492-2496.	3.1	15
76	Specific Interactions of Ammonium Functionalities in Amino Acids with Aqueous Fluoride and Iodide. Journal of Physical Chemistry B, 2010, 114, 13853-13860.	2.6	19
77	Liquid-Liquid Phase Transition in Supercooled Yttria-Alumina. Physical Review Letters, 2009, 103, 225702.	7.8	58
78	Establishing the structure of GeS ₂ at high pressures and temperatures: a combined approach using x-ray and neutron diffraction. Journal of Physics Condensed Matter, 2009, 21, 474217.	1.8	59
79	The structure of liquid carbon dioxide and carbon disulfide. Journal of Chemical Physics, 2009, 130, 174503.	3.0	15
80	Local structure of liquid CaAl2O4 from ab initio molecular dynamics simulations. Journal of Non-Crystalline Solids, 2008, 354, 5337-5339.	3.1	17
81	The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Measurement Science and Technology, 2008, 19, 034001.	2.6	218
82	The structure of the rare-earth phosphate glass (Sm2O3)0.205(P2O5)0.795studied by anomalous dispersion neutron diffraction. Journal of Physics Condensed Matter, 2007, 19, 056002.	1.8	18
83	Magnetic critical scattering in solid Co ₈₀ Pd ₂₀ . Journal of Physics Condensed Matter, 2007, 19, 415106.	1.8	6
84	Structural study of levitated liquid Y2O3 using neutron scattering. Journal of Non-Crystalline Solids, 2007, 353, 993-995.	3.1	9
85	Structure and dynamics of levitated liquid aluminates. Journal of Non-Crystalline Solids, 2007, 353, 1705-1712.	3.1	17
86	Ab-initio molecular dynamics simulations of the structure of liquid aluminates. Journal of Non-Crystalline Solids, 2007, 353, 1789-1792.	3.1	24
87	Structure of molten yttrium aluminates: a neutron diffraction study. Journal of Physics Condensed Matter, 2007, 19, 415105.	1.8	5
88	Structure and dynamics of levitated liquid materials. Pure and Applied Chemistry, 2007, 79, 1643-1652.	1.9	7
89	The neutron diffraction anomalous dispersion technique and its application to vitreous Sm2O3·4P2O5. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571, 622-635.	1.6	14
90	Levitation apparatus for neutron diffraction investigations on high temperature liquids. Review of Scientific Instruments, 2006, 77, 053903.	1.3	70

#	Article	IF	Citations
91	Neutron and x-ray diffraction studies of liquids and glasses. Reports on Progress in Physics, 2006, 69, 233-299.	20.1	399
92	Structure of liquid lithium. Journal of Physics Condensed Matter, 2004, 16, 195-222.	1.8	31
93	Wide and low angle neutron scattering of water–pyridine mixtures. Chemical Physics Letters, 2004, 388, 468-472.	2.6	11
94	Structure of rare-earth phosphate glasses by neutron diffraction. Journal of Non-Crystalline Solids, 2004, 345-346, 208-212.	3.1	16
95	Structure of lanthanum and cerium phosphate glasses by the method of isomorphic substitution in neutron diffraction. Physical Review B, 2003, 68, .	3.2	25
96	High temperatureâ€"high pressure apparatus for neutron diffraction on molten salts: Structure factors of molten zinc chloride. Physical Chemistry Chemical Physics, 2003, 5, 5313-5318.	2.8	8
97	ldentification of the Relative Distribution of Rare-Earth Ions in Phosphate Glasses. Physical Review Letters, 2003, 90, 185501.	7.8	26
98	Kinetics of the high- to low-density amorphous water transition. Journal of Physics Condensed Matter, 2003, 15, 321-332.	1.8	82
99	Structure of dysprosium and holmium phosphate glasses by the method of isomorphic substitution in neutron diffraction. Journal of Physics Condensed Matter, 2003, 15, 8235-8252.	1.8	28
100	La diffraction des neutrons et des rayons X pour l'étude structurale des liquides et des verres. European Physical Journal Special Topics, 2003, 103, 359-390.	0.2	7
101	Glassy dynamics of a kinetically constrained model: a direct comparison with experiment. Journal of Physics Condensed Matter, 2002, 14, 1509-1521.	1.8	8
102	D4c: A very high precision diffractometer for disordered materials. Applied Physics A: Materials Science and Processing, 2002, 74, s160-s162.	2.3	201
103	Neutron diffraction study of quantum effects on the pair correlation function of low-density 4 He. Applied Physics A: Materials Science and Processing, 2002, 74, s418-s420.	2.3	1
104	First Solvation Shell of the Cu(II) Aqua Ion: Evidence for Fivefold Coordination. Science, 2001, 291, 856-859.	12.6	358
105	Europium Palladium Hydrides. Inorganic Chemistry, 2001, 40, 2608-2613.	4.0	39
106	Stabilisation of fcc cobalt layers by 0.4 nm thick manganese layers in Co/Mn superlattices. European Physical Journal B, 2001, 19, 225-239.	1.5	10
107	The hydration structure of the Ni2+ ion intercalated in montmorillonite clay: a neutron diffraction with isotopic substitution study. Physical Chemistry Chemical Physics, 2001, 3, 5567-5574.	2.8	23
108	Operation of sealed microstrip gas chambers at the ILL. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 471, 60-68.	1.6	26

7

#	Article	IF	Citations
109	Anomalous Elastic Properties of Si/Ge Superlattices: The Role of Interfaces. Physica Status Solidi A, 2001, 188, 1023-1040.	1.7	9
110	Ag+dynamics in the superionic and liquid phases of Ag2Se and Ag2Te by coherent quasi-elastic neutron scattering. Journal of Physics Condensed Matter, 2001, 13, 2425-2436.	1.8	23
111	A determination of the structure of liquid Ga2Te3using combined X-ray diffraction and neutron diffraction with isotopic substitution. Molecular Physics, 2001, 99, 767-772.	1.7	9
112	Operation of sealed microstrip gas chambers at the ILL. IEEE Transactions on Nuclear Science, 2001, 48, 1075-1080.	2.0	14
113	Lithium environment in PEO-LiClO 4 polymer electrolyte. Europhysics Letters, 2001, 54, 347-353.	2.0	67
114	Hydrophobic hydration of argon at high temperatures. Journal of Chemical Physics, 2001, 115, 339-343.	3.0	16
115	The structure of a fluid mixture of deuterated ethane and deuterated methane by high-pressure neutron diffraction experiments. Journal of Chemical Physics, 2001, 115, 5561-5566.	3.0	1
116	The D4c neutron diffractometer for liquids and glasses. Physica B: Condensed Matter, 2000, 276-278, 93-94.	2.7	12
117	EPMC versus RMC modelling: the structure of supercritical HCF3. Physica B: Condensed Matter, 2000, 276-278, 481-482.	2.7	6
118	The microscopic structure of liquid mercury from neutron and X-ray diffraction. Physica B: Condensed Matter, 2000, 276-278, 452-453.	2.7	10
119	The magnetic structure of GdCu2. Journal of Magnetism and Magnetic Materials, 2000, 214, 281-290.	2.3	17
120	Defects in a Disordered World: The Structure of GlassyGeSe2. Physical Review Letters, 2000, 84, 2413-2416.	7.8	232
121	Small angle neutron scattering from D2O in the critical region. Journal of Physics Condensed Matter, 2000, 12, 3531-3542.	1.8	18
122	Rotational freezing in plastic crystals: a model system for investigating the dynamics of the glass transition. Journal of Physics Condensed Matter, 2000, 12, A391-A397.	1.8	7
123	The structure of liquid and supercritical deuterium fluoride from neutron scattering using high-pressure techniques. Journal of Chemical Physics, 2000, 113, 3690-3696.	3.0	43
124	Role of low-frequency vibrations on sound propagation in glasses at intermediate temperature. Physical Review B, 2000, 61, 8778-8783.	3.2	21
125	Rotational dynamics in the plastic-crystal phase of ethanol: Relevance for understanding the dynamics during the structural glass transition. Physical Review B, 2000, 61, 12082-12093.	3.2	40
126	Structure of a metallic solution of lithium in ammonia. Physical Review B, 2000, 61, 11993-11997.	3.2	22

#	Article	IF	CITATIONS
127	The structure of fluid trifluoromethane and methylfluoride. Journal of Physics Condensed Matter, 2000, 12, 8765-8776.	1.8	18
128	A determination of the structure of liquid Ag2Te using neutron diffraction and isotopic substitution and its comparison to Ag2Se. Journal of Physics Condensed Matter, 2000, 12, 7311-7322.	1.8	14
129	Hydrogen bonding in liquid methanol at ambient conditions and at high pressure. Molecular Physics, 2000, 98, 125-134.	1.7	56
130	Structure of the liquid semiconductor GeSe. Journal of Physics Condensed Matter, 1999, 11, 7051-7060.	1.8	21
131	An experimental separation of anharmonic and disorder effects on glassy dynamics. Europhysics Letters, 1999, 46, 643-648.	2.0	2
132	Purely Dynamical Signature of the Orientational Glass Transition. Physical Review Letters, 1999, 83, 2757-2760.	7.8	41
133	Magnetic structure of GdCu through the martensitic structural transformation: A neutron-diffraction study. Physical Review B, 1999, 59, 512-518.	3.2	42
134	The structure of fluid argon from high-pressure neutron diffraction andab initiomolecular dynamics simulations. Journal of Chemical Physics, 1999, 111, 2641-2646.	3.0	16
135	Structural studies of multiwall carbon nanotubes by neutron diffraction. Physical Review B, 1999, 59, 1665-1668.	3.2	68
136	Oxidation study of Co/Cu multilayers by resonant X-ray reflectivity. Vacuum, 1999, 52, 109-113.	3.5	4
137	Structural studies of a water/dioxane mixture by neutron diffraction with hydrogen/deuterium substitution. Chemical Physics Letters, 1999, 303, 315-319.	2.6	23
138	Quantitative Evaluation of Anharmonic and Disorder Effects on Glassy Dynamics. Physical Review Letters, 1999, 82, 1193-1196.	7.8	30
139	Giant magnetoresistance in Fe/Cr superlattices with and without bulk scattering. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 104-106.	2.3	5
140	Neutron diffraction on mercury: density dependence of the static structure factor. Journal of Non-Crystalline Solids, 1999, 250-252, 35-39.	3.1	8
141	Local order and metal–non-metal transition in CdxTe1Ⱂx: a neutron diffraction study. Journal of Non-Crystalline Solids, 1999, 250-252, 297-300.	3.1	8
142	Structure of molten GeSe by neutron diffraction: the Ge coordination environment. Journal of Non-Crystalline Solids, 1999, 250-252, 405-409.	3.1	6
143	Giant magnetoresistance dependence on the lateral correlation length of the interface roughness in magnetic superlattices. Physical Review B, 1999, 59, 1242-1248.	3.2	52
144	<title>Structural studies of carbon nanotubes by wide-angle neutron scattering</title> ., 1999,,.		2

#	Article	IF	CITATIONS
145	Investigation of liquid 1,4-dioxane: an X-ray and neutron diffraction study. Molecular Physics, 1999, 96, 743-747.	1.7	2
146	Quantitative interface roughness analysis of Fe/Cr superlattices. Superlattices and Microstructures, 1998, 24, 239-247.	3.1	2
147	Combination of specular and off-specular low-angle X-ray diffraction in the study of metallic multilayers. Solid State Communications, 1998, 108, 769-773.	1.9	2
148	The Structure of Interlayer Water in Liâ^'Montmorillonite Studied by Neutron Diffraction with Isotopic Substitution. Journal of Physical Chemistry B, 1998, 102, 10899-10905.	2.6	42
149	Neutron diffraction experiments on ethane under high pressure. Molecular Physics, 1998, 94, 325-333.	1.7	9
150	Low-temperature specific heat and glassy dynamics of a polymorphic molecular solid. Physical Review B, 1998, 58, 745-755.	3.2	98
151	A determination of the partial structure factors of liquid TISe using combined x-ray and neutron diffraction. Journal of Physics Condensed Matter, 1998, 10, L645-L650.	1.8	8
152	Study of interfaces in Co/Cu multilayers by low-angle anomalous x-ray diffraction. Journal of Applied Physics, 1998, 84, 1881-1888.	2.5	22
153	Quantum Mechanical Effects on the Static Structure Factor of Pairs of Orthodeuterium Molecules. Physical Review Letters, 1998, 81, 5828-5831.	7.8	6
154	Quantitative study of the interdependence OF interface structure and giant magnetoresistance in polycrystalline Fe/Cr superlattices. Physical Review B, 1998, 57, 13692-13697.	3.2	35
155	Local order and magnetism in liquid Al-Pd-Mn alloys. Physical Review B, 1998, 58, 6273-6286.	3.2	84
156	Structure of the glassy fast-ion conductorAgPS3by neutron diffraction. Physical Review B, 1998, 58, 6115-6123.	3.2	53
157	A determination of the structure of liquid using neutron diffraction and isotopic substitution. Journal of Physics Condensed Matter, 1997, 9, 6159-6173.	1.8	37
158	Structural correlations in disordered matter: An experimental separation of orientational and positional contributions. Physical Review B, 1997, 56, 11536-11545.	3.2	47
159	Neutron-diffraction studies of amorphousCNxmaterials. Physical Review B, 1997, 56, 14315-14321.	3.2	17
160	Collective, short-wavelength excitations in liquid gallium. Physical Review E, 1997, 56, 3358-3369.	2.1	39
161	Quantitative Assessment of the Effects of Orientational and Positional Disorder on Glassy Dynamics. Physical Review Letters, 1997, 78, 82-85.	7.8	162
162	The structure of low-density ortho-deuterium investigated through neutron diffraction. Physica B: Condensed Matter, 1997, 234-236, 331-333.	2.7	0

#	Article	IF	Citations
163	Polymorphic ethyl alcohol as a model system for the quantitative study of glassy behavior. Physica B: Condensed Matter, 1997, 234-236, 433-434.	2.7	0
164	The relationship between intermediate-range order in glasses and discernible features in the static structure factor. Physica B: Condensed Matter, 1997, 234-236, 448-449.	2.7	0
165	Disorder effects on glassy dynamics: Separation of orientational and positional correlations. Physica B: Condensed Matter, 1997, 241-243, 883-889.	2.7	5
166	Structure in liquid KTl investigated by means of neutron diffraction using 205Tl isotope substitution. Physica B: Condensed Matter, 1997, 241-243, 961-963.	2.7	3
167	Neutron diffraction by the flux line lattice in YBa2Cu3O7â^Î^single. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2089-2090.	1.2	4
168	Neutron Diffraction by the Flux Line Lattice in YBa2Cu3O7â^'Î^ Single Crystals. Journal of Applied Crystallography, 1997, 30, 571-574.	4.5	3
169	Direct Experimental Evidence of the Relationship between Intermediate-Range Order in Topologically Disordered Matter and Discernible Features in the Static Structure Factor. Physical Review Letters, 1996, 77, 3823-3826.	7.8	70
170	Stabilization of the fcc Co structure in Co/Mn multilayers with very thin Mn layers. Journal of Magnetism and Magnetic Materials, 1996, 156, 23-24.	2.3	4
171	Influence of different kinds of interface roughness on the giant magnetoresistance in Fe/Cr superlattices. Journal of Magnetism and Magnetic Materials, 1996, 156, 339-340.	2.3	8
172	Critical scattering by fluid cyclohexane in porous silica. Chemical Physics Letters, 1996, 253, 367-371.	2.6	8
173	Specular and off-specular anomalous X-ray scattering as quantitative structural probes of multilayers. Nuclear Instruments & Methods in Physics Research B, 1995, 97, 402-406.	1.4	11
174	Rapid crystallization of amorphous Coî—,Zr and Feî—,B close to eutectic compositions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 396-400.	5 . 6	2
175	Thermal conductivity and specific heat of boron carbides. Journal of Alloys and Compounds, 1994, 203, 67-75.	5. 5	28
176	Interfacial structure and giant magnetoresistance in Fe/Cr superlattices. European Physical Journal Special Topics, 1994, 04, C9-121-C9-125.	0.2	1
177	Time-resolved X-ray scattering studies of rapid crystallization of amorphous metals. International Journal of Thermophysics, 1993, 14, 541-553.	2.1	0
178	In situx-ray-scattering studies of polymorphic crystallization of metal-boron glasses. Physical Review B, 1993, 47, 11757-11766.	3.2	6
179	Influence of spin-orbit scattering on the magnetoresistance due to enhanced electron-electron interactions. Physical Review B, 1992, 46, 10035-10040.	3.2	28
180	Thermal conductivity and specific heat of glass ceramics. Physical Review B, 1991, 44, 12226-12232.	3.2	26

#	Article	IF	CITATIONS
181	Effect of Crystallization on Thermal Conductivity and Specific Heat of Two Corning Glass-Ceramics. Journal of the American Ceramic Society, 1991, 74, 564-568.	3.8	8
182	Thermal properties of boron and borides. Physical Review B, 1989, 40, 3254-3260.	3.2	86
183	Thermal conductivity of thin films: Measurements and understanding. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1259-1266.	2.1	270
184	Percolating cermet thinâ€film thermistors between 50 mK–300 K and 0–20 T. Journal of Applied Physics, 1988, 64, 4760-4762.	2.5	15
185	Phonon radiative heat transfer and surface scattering. Physical Review B, 1988, 38, 7576-7594.	3.2	136
186	Crystal electric fields in heavy-electron metals: The specific heats of U2Zn17andCeCu6to 70 K. Physical Review B, 1987, 36, 5330-5342.	3.2	27
187	Operation of sealed Microstrip Gas Chambers at the ILL. , 0, , .		0