Anne Grapin-Botton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2970706/publications.pdf

Version: 2024-02-01

50 papers

3,315 citations

201674 27 h-index 50 g-index

54 all docs

54 docs citations

54 times ranked 4222 citing authors

#	Article	IF	CITATIONS
1	Improved Differentiation of hESC-Derived Pancreatic Progenitors by Using Human Fetal Pancreatic Mesenchymal Cells in a Microâ€scalable Three-Dimensional Co-culture System. Stem Cell Reviews and Reports, 2022, 18, 360-377.	3.8	8
2	Epithelial morphogenesis in organoids. Current Opinion in Genetics and Development, 2022, 72, 30-37.	3.3	10
3	Stem cell-derived β cells go in monkeys. Cell Stem Cell, 2022, 29, 500-502.	11.1	2
4	Mapping and exploring the organoid state space using synthetic biology. Seminars in Cell and Developmental Biology, 2022, , .	5.0	3
5	Long-term feeder-free culture of human pancreatic progenitors on fibronectin or matrix-free polymer potentiates \hat{l}^2 cell differentiation. Stem Cell Reports, 2022, 17, 1215-1228.	4.8	11
6	Organoid Imaging: Seeing Development and Function. Annual Review of Cell and Developmental Biology, 2022, 38, 447-466.	9.4	11
7	Self-organization of organoids from endoderm-derived cells. Journal of Molecular Medicine, 2021, 99, 449-462.	3.9	11
8	Pancreas morphogenesis: Branching in and then out. Current Topics in Developmental Biology, 2021, 143, 75-110.	2.2	6
9	A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nature Communications, 2021, 12, 3144.	12.8	51
10	Nutrients men-TOR \hat{l}^2 -Cells to Adulthood. Developmental Cell, 2020, 54, 140-141.	7.0	2
11	Quantification of Visco-Elastic Properties of a Matrigel for Organoid Development as a Function of Polymer Concentration. Frontiers in Physics, 2020, 8, .	2.1	18
12	Regeneration of the pancreas: proliferation and cellular conversion of surviving cells. Current Opinion in Genetics and Development, 2020, 64, 84-93.	3.3	4
13	Apical Restriction of the Planar Cell Polarity Component VANGL in Pancreatic Ducts Is Required to Maintain Epithelial Integrity. Cell Reports, 2020, 31, 107677.	6.4	16
14	Bromodomain and Extra Terminal Proteins Inhibitors Promote Pancreatic Endocrine Cell Fate. Diabetes, 2019, 68, db180224.	0.6	13
15	The EndoC-Î ² H1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Molecular Metabolism, 2018, 8, 144-157.	6.5	110
16	Inhibiting RHOA Signaling in Mice Increases Glucose Tolerance and Numbers of Enteroendocrine and Other Secretory Cells in the Intestine. Gastroenterology, 2018, 155, 1164-1176.e2.	1.3	41
17	Deconstructing the principles of ductal network formation in the pancreas. PLoS Biology, 2018, 16, e2002842.	5.6	29
18	Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development (Cambridge), 2018, 145, .	2.5	78

#	Article	IF	CITATIONS
19	Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Current Topics in Developmental Biology, 2018, 129, 143-190.	2.2	41
20	The molecular and morphogenetic basis of pancreas organogenesis. Seminars in Cell and Developmental Biology, 2017, 66, 51-68.	5.0	119
21	Parsing the Pancreas. New England Journal of Medicine, 2017, 376, 886-888.	27.0	3
22	The physics of organoids: a biophysical approach to understanding organogenesis. Development (Cambridge), 2017, 144, 946-951.	2.5	55
23	Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation. Stem Cell Reports, 2017, 9, 1246-1261.	4.8	98
24	Stochastic priming and spatial cues orchestrate heterogeneous clonal contribution to mouse pancreas organogenesis. Nature Communications, 2017, 8, 605.	12.8	38
25	The Importance of REST for Development and Function of Beta Cells. Frontiers in Cell and Developmental Biology, 2017, 5, 12.	3.7	22
26	Short-range growth inhibitory signals from the epithelium can drive non-stereotypic branching in the pancreas. Physical Biology, 2016, 13, 016007.	1.8	14
27	Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis. Development (Cambridge), 2015, 142, 858-870.	2.5	20
28	REST represses a subset of the pancreatic endocrine differentiation program. Developmental Biology, 2015, 405, 316-327.	2.0	23
29	Cell Cycle–Dependent Differentiation Dynamics Balances Growth and Endocrine Differentiation in the Pancreas. PLoS Biology, 2015, 13, e1002111.	5 . 6	53
30	Pairing-up SOX to kick-start beta cell genesis. Diabetologia, 2015, 58, 859-861.	6. 3	3
31	Concise Reviews: In Vitro-Produced Pancreas Organogenesis Models in Three Dimensions: Self-Organization From Few Stem Cells or Progenitors. Stem Cells, 2015, 33, 8-14.	3.2	14
32	Dominant and context-specific control of endodermal organ allocation by Ptf1a. Development (Cambridge), 2014, 141, 4385-4394.	2.5	21
33	In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors. Journal of Visualized Experiments, 2014, , .	0.3	20
34	Artificial three-dimensional niches deconstruct pancreas development <i>in vitro</i> . Development (Cambridge), 2013, 140, 4452-4462.	2.5	233
35	Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment. Developmental Biology, 2013, 376, 1-12.	2.0	47
36	The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO Journal, 2013, 32, 1393-1408.	7.8	94

#	Article	IF	CITATIONS
37	A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development (Cambridge), 2012, 139, 2488-2499.	2.5	200
38	Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis. Cell Reports, 2012, 2, 1593-1606.	6.4	82
39	RNA Profiling and Chromatin Immunoprecipitation-Sequencing Reveal that PTF1a Stabilizes Pancreas Progenitor Identity via the Control of MNX1/HLXB9 and a Network of Other Transcription Factors. Molecular and Cellular Biology, 2012, 32, 1189-1199.	2.3	51
40	Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Human Mutation, 2012, 33, 86-90.	2.5	63
41	Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Developmental Dynamics, 2011, 240, 589-604.	1.8	131
42	Retinoic Acid Signaling Organizes Endodermal Organ Specification along the Entire Antero-Posterior Axis. PLoS ONE, 2009, 4, e5845.	2.5	99
43	Temporal Control of Neurogenin3 Activity in Pancreas Progenitors Reveals Competence Windows for the Generation of Different Endocrine Cell Types. Developmental Cell, 2007, 12, 457-465.	7.0	300
44	Evolution of the mechanisms and molecular control of endoderm formation. Mechanisms of Development, 2007, 124, 253-278.	1.7	75
45	FGF signaling is necessary for establishing gut tube domains alongthe anterior–posterior axis in vivo. Mechanisms of Development, 2006, 123, 42-55.	1.7	162
46	Pancreas-Specific Deletion of \hat{l}^2 -Catenin Reveals Wnt-Dependent and Wnt-Independent Functions during Development. Current Biology, 2005, 15, 1677-1683.	3.9	156
47	Ductal cells of the pancreas. International Journal of Biochemistry and Cell Biology, 2005, 37, 504-510.	2.8	77
48	Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Developmental Biology, 2003, 259, 109-122.	2.0	222
49	Endoderm development: from patterning to organogenesis. Trends in Genetics, 2000, 16, 124-130.	6.7	237
50	The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mechanisms of Development, 1997, 65, 111-122.	1.7	104