Yue Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2970655/publications.pdf

Version: 2024-02-01

	47006	58581
7,382	47	82
citations	h-index	g-index
147	147	9355
docs citations	times ranked	citing authors
		147 147

#	Article	IF	CITATIONS
1	Au Polyhedron Array with Tunable Crystal Facets by PVPâ€Assisted Thermodynamic Control and Its Sharp Shape As Well As Highâ€Energy Exposed Planes Coâ€Boosted SERS Activity. Small, 2022, 18, e2105045.	10.0	16
2	The multi-phased beam dump scheme in BRing at the HIAF. Radiation Detection Technology and Methods, 2022, 6, 111-121.	0.8	0
3	Electrostatic self-assembly of 2D Janus PS@Au nanoraspberry photonic-crystal array with enhanced near-infrared SERS activity. Materials Advances, 2022, 3, 1512-1517.	5.4	5
4	Microporous eriaâ€Wrapped Gold Nanoparticles for Conductometric and SERS Dual Monitoring of Hazardous Gases at Room Temperature. Advanced Materials Interfaces, 2022, 9, .	3.7	5
5	2D Colloidal assembly. , 2022, , .		0
6	Flourish of Proton and Carbon Ion Radiotherapy in China. Frontiers in Oncology, 2022, 12, 819905.	2.8	5
7	Abnormally Weak Surface-Enhanced Raman Scattering Activity of Tip-Rich Au Nanostars: The Role of Interfacial Defects. Journal of Physical Chemistry Letters, 2022, 13, 2428-2433.	4.6	2
8	Biaxially Strained MoS ₂ Nanoshells with Controllable Layers Boost Alkaline Hydrogen Evolution. Advanced Materials, 2022, 34, e2202195.	21.0	43
9	Enhanced oxygen evolution catalytic activity of NiS ₂ by coupling with ferrous phosphite and phosphide. Sustainable Energy and Fuels, 2021, 5, 1801-1808.	4.9	7
10	Self-assembly of superstructures at all scales. Matter, 2021, 4, 927-941.	10.0	32
11	One-Pot Synthesis of Ultrasmooth, Precisely Shaped Gold Nanospheres via Surface Self-Polishing Etching and Regrowth. Chemistry of Materials, 2021, 33, 2593-2603.	6.7	29
12	The influence of beam delivery uncertainty on dose uniformity and penumbra for pencil beam scanning in carbon-ion radiotherapy. PLoS ONE, 2021, 16, e0249452.	2.5	1
13	Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays. ACS Omega, 2021, 6, 18928-18938.	3.5	22
14	Hydrogel Film@Au Nanoparticle Arrays Based on Selfâ€Assembly Coâ€Assisted by Electrostatic Attraction and Hydrogelâ€Shrinkage for SERS Detection with Active Gaps. Advanced Materials Interfaces, 2021, 8, 2101055.	3.7	13
15	Ultrasensitive surface-enhanced Raman spectroscopy detection of gaseous sulfur-mustard simulant based on thin oxide-coated gold nanocone arrays. Journal of Hazardous Materials, 2021, 420, 126668.	12.4	17
16	Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. Soft Matter, 2021, 17, 9057-9065.	2.7	13
17	A sensitive colorimetric chiral recognition for thiol-containing amino acids based on NIR plasmonic MoO _{3â°'<i>x</i>} nanoparticles. Journal of Materials Chemistry C, 2021, 9, 11091-11097.	5.5	3
18	A universal route with fine kinetic control to a family of penta-twinned gold nanocrystals. Chemical Science, 2021, 12, 12631-12639.	7.4	15

#	Article	IF	CITATIONS
19	Convective Self-Assembly of 2D Nonclose-Packed Binary Au Nanoparticle Arrays with Tunable Optical Properties. Chemistry of Materials, 2021, 33, 310-319.	6.7	38
20	Optimal Excitation Wavelength for Surface-Enhanced Raman Spectroscopy: The Role of Chemical Interface Damping. Journal of Physical Chemistry Letters, 2021, 12, 11014-11021.	4.6	6
21	High-Performance Aqueous Zn Battery Based on MoS ₂ -Loaded MnO _{2–<i>x</i>} @Carbon Aerogel. Journal of Physical Chemistry Letters, 2021, 12, 11114-11121.	4.6	3
22	Selective adsorption of Ag (â) from aqueous solutions using Chitosan/polydopamine@C@magnetic fly ash adsorbent beads. Journal of Hazardous Materials, 2020, 381, 120943.	12.4	56
23	PtPdAg Hollow Nanodendrites: Templateâ€Free Synthesis and High Electrocatalytic Activity for Methanol Oxidation Reaction. Small Methods, 2020, 4, 1900709.	8.6	44
24	Highly Selective and Sensitive Detection of Hydrogen Sulfide by the Diffraction Peak of Periodic Au Nanoparticle Array with Silver Coating. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40702-40710.	8.0	19
25	Ultra-fast synthesis of water soluble MoO3â^'x quantum dots with controlled oxygen vacancies and their near infrared fluorescence sensing to detect H2O2. Nanoscale Horizons, 2020, 5, 1538-1543.	8.0	16
26	Ultrathin, Stretchable, and Breathable Epidermal Electronics Based on a Facile Bubble Blowing Method. Advanced Electronic Materials, 2020, 6, 2000306.	5.1	48
27	Orthogonal Electric Control of the Outâ€Ofâ€Plane Fieldâ€Effect in 2D Ferroelectric αâ€In ₂ Se ₃ . Advanced Electronic Materials, 2020, 6, 2000061.	5.1	56
28	Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 2020, 8, 13415-13436.	10.3	124
29	Conductometric Response-Triggered Surface-Enhanced Raman Spectroscopy for Accurate Gas Recognition and Monitoring Based on Oxide-wrapped Metal Nanoparticles. ACS Sensors, 2020, 5, 1641-1649.	7.8	9
30	Hydrogel Responsive Nanomaterials for Colorimetric Chemical Sensors. Springer Series in Materials Science, 2020, , 165-196.	0.6	1
31	Ultrathin layer solid transformation-enabled-surface enhanced Raman spectroscopy for trace harmful small gaseous molecule detection. Nanoscale Horizons, 2020, 5, 739-746.	8.0	11
32	Hollow FeP/Fe ₃ O ₄ Hybrid Nanoparticles on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12783-12792.	8.0	41
33	Two-dimensional flower-shaped Au@Ag nanoparticle arrays as effective SERS substrates with high sensitivity and reproducibility for detection of thiram. Journal of Materials Chemistry C, 2020, 8, 3838-3845.	5.5	29
34	Engineering of the dâ€Band Center of Perovskite Cobaltite for Enhanced Electrocatalytic Oxygen Evolution. ChemSusChem, 2020, 13, 2671-2676.	6.8	39
35	Ultrathin Hexagonal PbO Nanosheets Induced by Laser Ablation in Water for Chemically Trapping Surface-Enhanced Raman Spectroscopy Chips and Detection of Trace Gaseous H2S. ACS Applied Materials & Detection of Trace Gaseous H2S. ACS Account Accoun	8.0	14
36	Highly Selective Biomimetic Flexible Tactile Sensor for Neuroprosthetics. Research, 2020, 2020, 8910692.	5.7	26

#	Article	IF	CITATIONS
37	Bamboo-Shaped Carbon Nanotubes on Coal Fly Ash Cenospheres for Pb(II) Adsorption. Journal of Nanoscience and Nanotechnology, 2020, 20, 5089-5095.	0.9	1
38	Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angewandte Chemie, 2019, 131, 806-810.	2.0	10
39	Crâ€Dopant Induced Breaking of Scaling Relations in CoFe Layered Double Hydroxides for Improvement of Oxygen Evolution Reaction. Small, 2019, 15, e1902373.	10.0	111
40	Airâ€Liquid Interfacial Selfâ€Assembly of Twoâ€Dimensional Periodic Nanostructured Arrays. ChemNanoMat, 2019, 5, 1338-1360.	2.8	34
41	Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for Surface Enhanced Ram Scattering-Based Detection of Trace Heavy-Metal Ions. ACS Applied Materials & Interfaces, 2019, 11, 28145-28153.	8.0	19
42	Au nanoparticle modified three-dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance. Applied Surface Science, 2019, 498, 143855.	6.1	42
43	Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment. Journal of Hazardous Materials, 2019, 368, 429-435.	12.4	72
44	Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohydrate Polymers, 2019, 219, 290-297.	10.2	50
45	Fabrication of Ag-nanosheets-built micro/nanostructured arrays via <i>in situ</i> conversion on Cu ₂ O-coated Si nanocone platform and their highly structurally-enhanced SERS effect. Nanotechnology, 2019, 30, 345302.	2.6	12
46	Hierarchical hetero-Ni ₃ Se ₄ @NiFe LDH micro/nanosheets as efficient bifunctional electrocatalysts with superior stability for overall water splitting. Nanoscale Horizons, 2019, 4, 1132-1138.	8.0	100
47	Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors. Accounts of Chemical Research, 2019, 52, 288-296.	15.6	157
48	Bilayer Au nanoparticle-decorated WO3 porous thin films: On-chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sensors and Actuators B: Chemical, 2019, 280, 192-200.	7.8	61
49	N-doping nanoporous carbon microspheres derived from MOFs for highly efficient removal of formaldehyde. Nanotechnology, 2019, 30, 105702.	2.6	14
50	Laser Synthesis of Colloids: Fundamentals and Applications. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 183-211.	0.1	0
51	Ultrasensitive and Stable Au Dimerâ€Based Colorimetric Sensors Using the Dynamically Tunable Gapâ€Dependent Plasmonic Coupling Optical Properties. Advanced Functional Materials, 2018, 28, 1707392.	14.9	48
52	Periodic Porous Alloyed Au–Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS Applied Materials & Therfaces, 2018, 10, 9792-9801.	8.0	138
53	Bionic PDMS film with hybrid superhydrophilic/superhydrophobic arrays for water harvest. Surface Innovations, 2018, 6, 141-149.	2.3	15
54	Decoration of Au Nanoparticles on MoS ₂ Nanospheres: From Janus to Core/Shell Structure. Journal of Physical Chemistry C, 2018, 122, 8628-8636.	3.1	18

#	Article	IF	Citations
55	3â€Acrylamidophenylboronic Acidâ€Modified Hydrogel Film Attached to a Gold Nanosphere Array to Detect Hydrofluoric Acid with Good Selectivity and Recyclability. ChemNanoMat, 2018, 4, 165-169.	2.8	6
56	Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. International Journal of Biological Macromolecules, 2018, 107, 957-964.	7.5	27
57	Strong SERS Performances of Ultrathin αâ€Co(OH) ₂ Nanosheets to the Toxic Organophosphorus Molecules and Hydrogen Bondâ€Induced Charge Transfer Mechanism. Advanced Materials Interfaces, 2018, 5, 1700709.	3.7	13
58	Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. Angewandte Chemie, 2018, 131, 929.	2.0	0
59	Nanosecond-Laser-Based Charge Transfer Plasmon Engineering of Solution-Assembled Nanodimers. Nano Letters, 2018, 18, 7014-7020.	9.1	21
60	Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2750-2756.	17.4	154
61	Large-Scale Synthesis of Co/CoO _{<i>x</i>} Encapsulated in Nitrogen-, Oxygen-, and Sulfur-Tridoped Three-Dimensional Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 6250-6259.	5.1	15
62	Ni _{0.33} Co _{0.67} MoS ₄ nanosheets as a bifunctional electrolytic water catalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 19555-19562.	10.3	50
63	Large Area α-Cu ₂ S Particle-Stacked Nanorod Arrays by Laser Ablation in Liquid and Their Strong Structurally Enhanced and Stable Visible Photoelectric Performances. ACS Applied Materials & Interfaces, 2018, 10, 19027-19036.	8.0	20
64	Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. Journal of Materials Chemistry A, 2018, 6, 13735-13742.	10.3	32
65	Cu-Doped CoP Nanorod Arrays: Efficient and Durable Hydrogen Evolution Reaction Electrocatalysts at All pH Values. ACS Applied Energy Materials, 2018, 1, 3835-3842.	5.1	58
66	Strong Electronic Interaction in Dualâ€Cationâ€Incorporated NiSe ₂ Nanosheets with Lattice Distortion for Highly Efficient Overall Water Splitting. Advanced Materials, 2018, 30, e1802121.	21.0	361
67	Kinetically-Controlled Growth of Chestnut-Like Au Nanocrystals with High-Density Tips and Their High SERS Performances on Organochlorine Pesticides. Nanomaterials, 2018, 8, 560.	4.1	7
68	MnMoO ₄ nanosheet array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity over a wide pH range. Nanotechnology, 2018, 29, 335403.	2.6	17
69	Bifunctional Hybrid Ni/Ni ₂ P Nanoparticles Encapsulated by Graphitic Carbon Supported with N, S Modified 3D Carbon Framework for Highly Efficient Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800473.	3.7	40
70	Oneâ€Step and Surfactantâ€Free Fabrication of Goldâ€Nanoparticleâ€Decorated Bismuth Oxychloride Nanosheets Based on Laser Ablation in Solution and Their Enhanced Visibleâ€Light Plasmonic Photocatalysis. ChemPhysChem, 2017, 18, 1146-1154.	2.1	9
71	Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity. Journal of Materials Research, 2017, 32, 717-725.	2.6	8
72	Capillary Gradientâ€Induced Selfâ€Assembly of Periodic Au Spherical Nanoparticle Arrays on an Ultralarge Scale via a Bisolvent System at Air/Water Interface. Advanced Materials Interfaces, 2017, 4, 1600976.	3.7	48

#	Article	IF	CITATIONS
73	Nanoscaled Amorphous TiO ₂ Hollow Spheres: TiCl ₄ Liquid Droplet-Based Hydrolysis Fabrication and Strong Hollow Structure-Enhanced Surface-Enhanced Raman Scattering Effects. Langmuir, 2017, 33, 5430-5438.	3.5	16
74	Hierarchical micro/nanostructured C doped Co/Co ₃ O ₄ hollow spheres derived from PS@Co(OH) ₂ for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 11163-11170.	10.3	61
75	Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. Journal of Colloid and Interface Science, 2017, 505, 467-475.	9.4	23
76	Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks. Nano Research, 2017, 10, 2257-2270.	10.4	44
77	Ultrathin Oxide Layer-Wrapped Noble Metal Nanoparticles via Colloidal Electrostatic Self-Assembly for Efficient and Reusable Surface Enhanced Raman Scattering Substrates. Langmuir, 2017, 33, 12934-12942.	3.5	10
78	Controlled synthesis of sponge-like porous Au–Ag alloy nanocubes for surface-enhanced Raman scattering properties. Journal of Materials Chemistry C, 2017, 5, 11039-11045.	5.5	45
79	Rapid and Efficient Self-Assembly of Au@ZnO Core–Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & amp; Interfaces, 2017, 9, 31897-31906.	8.0	53
80	Temperature regulation growth of Au nanocrystals: from concave trisoctahedron to dendritic structures and their ultrasensitive SERS-based detection of lindane. Journal of Materials Chemistry C, 2017, 5, 10399-10405.	5.5	23
81	Onion-Structured Spherical MoS ₂ Nanoparticles Induced by Laser Ablation in Water and Liquid Droplets' Radial Solidification/Oriented Growth Mechanism. Journal of Physical Chemistry C, 2017, 121, 23233-23239.	3.1	15
82	Mo doped Ni ₂ P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale, 2017, 9, 16674-16679.	5 . 6	179
83	Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics. Nanotechnology, 2017, 28, 405502.	2.6	8
84	Unconventional lithography for patterned nanomaterials. Nanotechnology, 2017, 28, 500201.	2.6	4
85	Mn doped porous cobalt nitride nanowires with high activity for water oxidation under both alkaline and neutral conditions. Chemical Communications, 2017, 53, 13237-13240.	4.1	53
86	SERS-based ultrasensitive detection of organophosphorus nerve agents via substrate's surface modification. Journal of Hazardous Materials, 2017, 324, 194-202.	12.4	52
87	Multiple Plasmonic Resonances and Cascade Effect in Asymmetrical Ag Nanowire Homotrimer. Chinese Journal of Chemical Physics, 2016, 29, 489-496.	1.3	0
88	Periodic nanostructured Au arrays on an Si electrode for high-performance electrochemical detection of hydrogen peroxide without an enzyme. Journal of Materials Chemistry C, 2016, 4, 9864-9871.	5 . 5	21
89	Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Science Bulletin, 2016, 61, 1358-1371.	9.0	51
90	Complete Au@ZnO core–shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis. Nanoscale, 2016, 8, 10774-10782.	5 . 6	94

#	Article	IF	Citations
91	Influence of dielectrics with light absorption on the photonic bandgap of porous alumina photonic crystals. Nano Research, 2016, 9, 703-712.	10.4	13
92	A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. Journal of Materials Chemistry C, 2016, 4, 2117-2122.	5.5	45
93	Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance. Acta Materialia, 2016, 105, 59-67.	7.9	62
94	Detection of dimethyl methylphosphonate by thin water film confined surface-enhanced Raman scattering method. Journal of Hazardous Materials, 2016, 303, 94-100.	12.4	15
95	Monodispersed Particles: Monodispersed Nb ₂ O ₅ Microspheres: Facile Synthesis, Air/Water Interfacial Selfâ€Assembly, Nb ₂ O ₅ â€Based Composite Films, and Their Selective NO ₂ Sensing (Adv. Mater. Interfaces 11/2015). Advanced Materials Interfaces. 2015. 2.	3.7	2
96	Monodispersed Nb ₂ O ₅ Microspheres: Facile Synthesis, Air/Water Interfacial Selfâ€Assembly, Nb ₂ O ₅ â€Based Composite Films, and Their Selective NO ₂ Sensing. Advanced Materials Interfaces, 2015, 2, 1500167.	3.7	62
97	Spherical Nanoparticle Arrays with Tunable Nanogaps and Their Hydrophobicity Enhanced Rapid SERS Detection by Localized Concentration of Droplet Evaporation. Advanced Materials Interfaces, 2015, 2, 1500031.	3.7	78
98	Aligned gold nanobowl arrays: their fabrication, anisotropic optical response and optical grating applications. Journal of Materials Chemistry C, 2015, 3, 51-57.	5.5	18
99	Rapid Synthesis of Monodisperse Au Nanospheres through a Laser Irradiation -Induced Shape Conversion, Self-Assembly and Their Electromagnetic Coupling SERS Enhancement. Scientific Reports, 2015, 5, 7686.	3.3	114
100	Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses. Chemical Communications, 2015, 51, 6609-6612.	4.1	36
101	Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: anti-curling performance and enhanced optical diffraction intensity. Journal of Materials Chemistry C, 2015, 3, 3659-3665.	5.5	40
102	Fabrication of gold and silver hierarchically micro/nanostructured arrays by localized electrocrystallization for application as SERS substrates. Journal of Materials Chemistry C, 2015, 3, 5709-5714.	5.5	19
103	A coordination and ligand replacement based three-input colorimetric logic gate sensing platform for melamine, mercury ions, and cysteine. RSC Advances, 2015, 5, 59106-59113.	3.6	15
104	Black Gold: Plasmonic Colloidosomes with Broadband Absorption Selfâ€Assembled from Monodispersed Gold Nanospheres by Using a Reverse Emulsion System. Angewandte Chemie - International Edition, 2015, 54, 9596-9600.	13.8	189
105	Physical Deposition Improved SERS Stability of Morphology Controlled Periodic Micro/Nanostructured Arrays Based on Colloidal Templates. Small, 2015, 11, 844-853.	10.0	138
106	A novel process to prepare a thin silica shell on the PDDA-stabilized spherical Au nanoparticles assisted by UV light irradiation. RSC Advances, 2014, 4, 64668-64674.	3.6	9
107	Hierarchical ZnO films with microplate/nanohole structures induced by precursor concentration and colloidal templates, their superhydrophobicity, and enhanced photocatalytic performance. Journal of Materials Research, 2014, 29, 115-122.	2.6	10
108	A controlled Ag–Au bimetallic nanoshelled microsphere array and its improved surface-enhanced Raman scattering effect. RSC Advances, 2014, 4, 8758.	3.6	25

#	Article	IF	Citations
109	Tungsten oxide nanostructures based on laser ablation in water and a hydrothermal route. CrystEngComm, 2014, 16, 2491-2498.	2.6	28
110	Gold Binaryâ€6tructured Arrays Based on Monolayer Colloidal Crystals and Their Optical Properties. Small, 2014, 10, 2374-2381.	10.0	25
111	Optical Materials: Gold Binary-Structured Arrays Based on Monolayer Colloidal Crystals and Their Optical Properties (Small 12/2014). Small, 2014, 10, 2373-2373.	10.0	0
112	CuO–ZnO Micro/Nanoporous Arrayâ€Filmâ€Based Chemosensors: New Sensing Properties to H ₂ S. Chemistry - A European Journal, 2014, 20, 6040-6046.	3.3	64
113	Design and fabrication of ZnO/Ni heterogeneous binary arrays with selective control of structure, size and distance via stepwise colloidal lithography. RSC Advances, 2013, 3, 14829.	3.6	8
114	Synthesis of nano-cubic ZnSn(OH)3 based on stannate reaction with liquid laser ablation-induced ZnO below room temperature. CrystEngComm, 2013, 15, 6159.	2.6	14
115	Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip. Scientific Reports, 2013, 3, 1669.	3.3	121
116	Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: fabrication and applications. Chemical Society Reviews, 2013, 42, 3614.	38.1	171
117	Trace detection of cyanide based on SERS effect of Ag nanoplate-built hollow microsphere arrays. Journal of Hazardous Materials, 2013, 248-249, 435-441.	12.4	57
118	Layer-controlled synthesis of WO3 ordered nanoporous films for optimum electrochromic application. Nanoscale, 2013, 5, 2460.	5.6	46
119	Micro/Nanostructured Arrays: Fabrication, Applications, and Devices. Journal of Nanomaterials, 2013, 2013, 1-1.	2.7	0
120	Phase Diagram, Design of Monolayer Binary Colloidal Crystals, and Their Fabrication Based on Ethanol-Assisted Self-Assembly at the Air/Water Interface. ACS Nano, 2012, 6, 6706-6716.	14.6	186
121	Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances. Journal of Materials Chemistry, 2012, 22, 3177.	6.7	51
122	Leaf-like Tungsten Oxide Nanoplatelets Induced by Laser Ablation in Liquid and Subsequent Aging. Crystal Growth and Design, 2012, 12, 2646-2652.	3.0	62
123	Gold quasi rod-shaped nanoparticle-built hierarchically micro/nanostructured pore array via clean electrodeposition on a colloidal monolayer and its structurally enhanced SERS performance. Journal of Materials Chemistry, 2011, 21, 8816.	6.7	30
124	Untraditional Approach to Complex Hierarchical Periodic Arrays with Trinary Stepwise Architectures of Micro-, Submicro-, and Nanosized Structures Based on Binary Colloidal Crystals and Their Fine Structure Enhanced Properties. ACS Nano, 2011, 5, 9403-9412.	14.6	94
125	Single-Crystalline Rutile TiO ₂ Hollow Spheres: Room-Temperature Synthesis, Tailored Visible-Light-Extinction, and Effective Scattering Layer for Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 19102-19109.	13.7	224
126	Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coordination Chemistry Reviews, 2011, 255, 357-373.	18.8	112

#	ARTICLE	IF	Citations
127	Hexagonal-Close-Packed, Hierarchical Amorphous TiO ₂ Nanocolumn Arrays: Transferability, Enhanced Photocatalytic Activity, and Superamphiphilicity without UV Irradiation. Journal of the American Chemical Society, 2008, 130, 14755-14762.	13.7	321
128	Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals. Chemistry of Materials, 2008, 20, 615-624.	6.7	240
129	Wettability and Superhydrophobicity of 2-D Ordered Nano-structured Arrays Based on Colloidal Monolayers. Journal of Adhesion Science and Technology, 2008, 22, 1949-1965.	2.6	10
130	Unconventional Method for Morphology-Controlled Carbonaceous Nanoarrays Based on Electron Irradiation of a Polystyrene Colloidal Monolayer. ACS Nano, 2008, 2, 1108-1112.	14.6	81
131	Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays. Langmuir, 2007, 23, 2169-2174.	3.5	281
132	Silver Hierarchical Bowl-Like Array:  Synthesis, Superhydrophobicity, and Optical Properties. Langmuir, 2007, 23, 9802-9807.	3.5	170
133	High-Yield Synthesis of Single-Crystalline Gold Nano-octahedra. Angewandte Chemie - International Edition, 2007, 46, 3264-3268.	13.8	209
134	Hierarchical Pore Structures Fabricated by Electron Irradiation of Silicone Grease and their Applications to Superhydrophobic and Superhydrophilic Films. Macromolecular Rapid Communications, 2007, 28, 246-251.	3.9	48
135	Morphology-controlled 2D ordered arrays by heating-induced deformation of 2D colloidal monolayer. Journal of Materials Chemistry, 2006, 16, 609-612.	6.7	43
136	Growth of ZnO Nanoneedle Arrays with Strong Ultraviolet Emissions by an Electrochemical Deposition Method. Crystal Growth and Design, 2006, 6, 1091-1095.	3.0	68
137	Well-aligned zinc sulfide nanobelt arrays: Excellent field emitters. Applied Physics Letters, 2006, 89, 231928.	3.3	48
138	Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. Journal of Colloid and Interface Science, 2005, 287, 634-639.	9.4	172
139	Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films. Journal of Materials Research, 2005, 20, 338-343.	2.6	21
140	Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bath deposition method. Nanotechnology, 2005, 16, 1734-1738.	2.6	124
141	Study on the Hâ^' stripping injection for the Rapid Cycling Synchrotron of the China Spallation Neutron Source. Radiation Detection Technology and Methods, 0, , .	0.8	0