Ka-Wing Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2970113/publications.pdf

Version: 2024-02-01

69
g-index
C 4 1 1
6411
ing authors

#	Article	IF	CITATIONS
1	Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 2007, 102, 771-776.	8.2	532
2	A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 2006, 97, 705-711.	8.2	419
3	Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT - Food Science and Technology, 2008, 41, 385-390.	5. 2	351
4	Cinnamon Bark Proanthocyanidins as Reactive Carbonyl Scavengers To Prevent the Formation of Advanced Glycation Endproducts. Journal of Agricultural and Food Chemistry, 2008, 56, 1907-1911.	5.2	208
5	Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chemistry, 2008, 106, 475-481.	8.2	194
6	The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry, 2010, 119, 49-53.	8.2	182
7	Tyrosinase inhibitors from paper mulberry (Broussonetia papyrifera). Food Chemistry, 2008, 106, 529-535.	8.2	124
8	Tyrosinase Inhibitory Constituents from the Roots of <i>Morus nigra</i> Relationship Study. Journal of Agricultural and Food Chemistry, 2010, 58, 5368-5373.	5.2	117
9	Isolation of tyrosinase inhibitors from <i>Artocarpus heterophyllus</i> and use of its extract as antibrowning agent. Molecular Nutrition and Food Research, 2008, 52, 1530-1538.	3.3	110
10	Heterocyclic amines: Chemistry and health. Molecular Nutrition and Food Research, 2006, 50, 1150-1170.	3.3	102
11	Inhibitory activities of dietary phenolic compounds on heterocyclic amine formation in both chemical		
	model system and beef patties. Molecular Nutrition and Food Research, 2007, 51, 969-976.	3.3	102
12	model system and beef patties. Molecular Nutrition and Food Research, 2007, 51, 969-976. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology, 2016, 151, 945-960.e6.	1.3	102
12 13	model system and beef patties. Molecular Nutrition and Food Research, 2007, 51, 969-976. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology,		
	model system and beef patties. Molecular Nutrition and Food Research, 2007, 51, 969-976. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology, 2016, 151, 945-960.e6. Natural Polyphenols as Direct Trapping Agents of Lipid Peroxidation-Derived Acrolein and	1.3	100
13	model system and beef patties. Molecular Nutrition and Food Research, 2007, 51, 969-976. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology, 2016, 151, 945-960.e6. Natural Polyphenols as Direct Trapping Agents of Lipid Peroxidation-Derived Acrolein and 4-Hydroxy- <i>trans</i> li>-2-nonenal. Chemical Research in Toxicology, 2009, 22, 1721-1727. Inhibition of heterocyclic amine formation by water-soluble vitamins in Maillard reaction model	1.3 3.3	100
13 14	model system and beef patties. Molecular Nutrition and Food Research, 2007, 51, 969-976. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology, 2016, 151, 945-960.e6. Natural Polyphenols as Direct Trapping Agents of Lipid Peroxidation-Derived Acrolein and 4-Hydroxy- <i>trans</i> -2-nonenal. Chemical Research in Toxicology, 2009, 22, 1721-1727. Inhibition of heterocyclic amine formation by water-soluble vitamins in Maillard reaction model systems and beef patties. Food Chemistry, 2012, 133, 760-766. Protective effects of pinostilbene, a resveratrol methylated derivative, against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Journal of Nutritional Biochemistry, 2010,	1.3 3.3 8.2	100 86 86
13 14 15	model system and beef patties. Molecular Nutrition and Food Research, 2007, 51, 969-976. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology, 2016, 151, 945-960.e6. Natural Polyphenols as Direct Trapping Agents of Lipid Peroxidation-Derived Acrolein and 4-Hydroxy- <i>trans</i> cli>-2-nonenal. Chemical Research in Toxicology, 2009, 22, 1721-1727. Inhibition of heterocyclic amine formation by water-soluble vitamins in Maillard reaction model systems and beef patties. Food Chemistry, 2012, 133, 760-766. Protective effects of pinostilbene, a resveratrol methylated derivative, against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Journal of Nutritional Biochemistry, 2010, 21, 482-489. Inhibition of acrylamide formation by vitamins in model reactions and fried potato strips. Food	1.3 3.3 8.2 4.2	100 86 86 85

#	Article	IF	Citations
19	Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells. Biochemical Pharmacology, 2019, 166, 231-241.	4.4	73
20	Inhibition of mutagenic PhIP formation by epigallocatechin gallate <i>via </i> scavenging of phenylacetaldehyde. Molecular Nutrition and Food Research, 2009, 53, 716-725.	3.3	68
21	Activities of hydrocolloids as inhibitors of acrylamide formation in model systems and fried potato strips. Food Chemistry, 2010, 121, 424-428.	8.2	66
22	Trapping of Phenylacetaldehyde as a Key Mechanism Responsible for Naringenin's Inhibitory Activity in Mutagenic 2-Amino-1-methyl-6-phenylimidazo [4,5-b]Pyridine Formation. Chemical Research in Toxicology, 2008, 21, 2026-2034.	3.3	63
23	8â€ <i>C</i> â€(<i>E</i> â€phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through ERK activation. Molecular Nutrition and Food Research, 2017, 61, 1600437.	3.3	60
24	Inhibitory Mechanism of Naringenin against Carcinogenic Acrylamide Formation and Nonenzymatic Browning in Maillard Model Reactions. Chemical Research in Toxicology, 2009, 22, 1483-1489.	3.3	59
25	Identification and characterization of molecular targets of natural products by mass spectrometry. Mass Spectrometry Reviews, 2010, 29, 126-155.	5.4	57
26	Oxyresveratrol as an Antibrowning Agent for Cloudy Apple Juices and Fresh-Cut Apples. Journal of Agricultural and Food Chemistry, 2007, 55, 2604-2610.	5.2	56
27	Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food and Function, 2019, 10, 5644-5655.	4.6	54
28	Staged cultivation enhances biomass accumulation in the green growth phase of Haematococcus pluvialis. Bioresource Technology, 2017, 233, 326-331.	9.6	53
29	Chemical Components and Tyrosinase Inhibitors from the Twigs of Artocarpus heterophyllus. Journal of Agricultural and Food Chemistry, 2009, 57, 6649-6655.	5.2	52
30	The multifunctional roles of flavonoids against the formation of advanced glycation end products (AGEs) and AGEs-induced harmful effects. Trends in Food Science and Technology, 2020, 103, 333-347.	15.1	50
31	Effects of Fruit Extracts on the Formation of Acrylamide in Model Reactions and Fried Potato Crisps. Journal of Agricultural and Food Chemistry, 2010, 58, 309-312.	5.2	49
32	Extract of the Microalga <i>Nitzschia laevis</i> Prevents Highâ€Fatâ€Dietâ€Induced Obesity in Mice by Modulating the Composition of Gut Microbiota. Molecular Nutrition and Food Research, 2019, 63, e1800808.	3.3	47
33	6- <i>C</i> -(<i>E</i> -phenylethenyl)-Naringenin Suppresses Colorectal Cancer Growth by Inhibiting Cyclooxygenase-1. Cancer Research, 2014, 74, 243-252.	0.9	45
34	Analysis of antioxidant activity and antioxidant constituents of Chinese toon. Journal of Functional Foods, 2009, 1, 253-259.	3.4	44
35	Preclinical Predictors of Anticancer Drug Efficacy: Critical Assessment with Emphasis on Whether Nanomolar Potency Should Be Required of Candidate Agents: TABLE 1. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 572-578.	2.5	44
36	Evaluation of two methods for the extraction of antioxidants from medicinal plants. Analytical and Bioanalytical Chemistry, 2007, 388, 483-488.	3.7	43

3

#	Article	IF	CITATIONS
37	Novel roles of hydrocolloids in foods: Inhibition of toxic maillard reaction products formation and attenuation of their harmful effects. Trends in Food Science and Technology, 2021, 111, 706-715.	15.1	42
38	Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis. Biotechnology for Biofuels, 2021, 14, 36.	6.2	40
39	Sesquiterpenoids from Homalomena occulta affect osteoblast proliferation, differentiation and mineralization in vitro. Phytochemistry, 2008, 69, 2367-2373.	2.9	38
40	Trapping Effects of Green and Black Tea Extracts on Peroxidation-Derived Carbonyl Substances of Seal Blubber Oil. Journal of Agricultural and Food Chemistry, 2009, 57, 1065-1069.	5.2	38
41	Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation. Bioresource Technology, 2018, 247, 610-615.	9.6	38
42	Protein oxidation in muscle-based products: Effects on physicochemical properties, quality concerns, and challenges to food industry. Food Research International, 2022, 157, 111322.	6.2	38
43	2,3′,4,4′,5′-Pentamethoxy-trans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochemical Pharmacology, 2009, 78, 1224-1232.	4.4	37
44	Carboxylesterases 1 and 2 Hydrolyze Phospho-Nonsteroidal Anti-Inflammatory Drugs: Relevance to Their Pharmacological Activity. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 422-432.	2.5	37
45	6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. European Journal of Cancer, 2016, 68, 38-50.	2.8	37
46	Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics. International Journal of Oncology, 2013, 43, 895-902.	3.3	31
47	Inhibitory effects of some hydrocolloids on the formation of heterocyclic amines in roast beef. Food Hydrocolloids, 2020, 108, 106073.	10.7	29
48	Resveratrol: Evidence for Its Nephroprotective Effect in Diabetic Nephropathy. Advances in Nutrition, 2020, 11, 1555-1568.	6.4	28
49	Unraveling the inhibitory effect of dihydromyricetin on heterocyclic aromatic amines formation. Journal of the Science of Food and Agriculture, 2018, 98, 1988-1994.	3.5	27
50	Phosphosulindac (OXT-328) Selectively Targets Breast Cancer Stem Cells In Vitro and in Human Breast Cancer Xenografts. Stem Cells, 2012, 30, 2065-2075.	3.2	26
51	Regioselective oxidation of phosphoâ€NSAIDs by human cytochrome P450 and flavin monooxygenase isoforms: implications for their pharmacokinetic properties and safety. British Journal of Pharmacology, 2012, 167, 222-232.	5. 4	25
52	The apple dihydrochalcone phloretin suppresses growth and improves chemosensitivity of breast cancer cells <i>via</i> inhibition of cytoprotective autophagy. Food and Function, 2021, 12, 177-190.	4.6	25
53	Steroidal saponins and ecdysterone from Asparagus filicinus and their cytotoxic activities. Steroids, 2010, 75, 734-739.	1.8	24
54	Application of high pressure processing to improve digestibility, reduce allergenicity, and avoid protein oxidation in cod (Gadus morhua). Food Chemistry, 2019, 298, 125087.	8.2	24

#	Article	IF	CITATIONS
55	Neuroprotective Potential of Mung Bean (<i>Vigna radiata</i> L.) Polyphenols in Alzheimer's Disease: A Review. Journal of Agricultural and Food Chemistry, 2021, 69, 11554-11571.	5.2	24
56	The effect of quercetin on diabetic nephropathy (DN): a systematic review and meta-analysis of animal studies. Food and Function, 2022, 13, 4789-4803.	4.6	24
57	Fucoxanthinol from the Diatom Nitzschia Laevis Ameliorates Neuroinflammatory Responses in Lipopolysaccharide-Stimulated BV-2 Microglia. Marine Drugs, 2020, 18, 116.	4.6	23
58	Light induces carotenoids accumulation in a heterotrophic docosahexaenoic acid producing microalga, Crypthecodinium sp. SUN. Bioresource Technology, 2019, 276, 177-182.	9.6	21
59	Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress. BMC Cancer, 2014, 14, 141.	2.6	20
60	Development of an Isotope Dilution UHPLC–QqQ-MS/MS-Based Method for Simultaneous Determination of Typical Advanced Glycation End Products and Acrylamide in Baked and Fried Foods. Journal of Agricultural and Food Chemistry, 2021, 69, 2611-2618.	5.2	19
61	Quantification of nepetalactones in catnip (Nepeta cataria L.) by HPLC coupled with ultraviolet and mass spectrometric detection. Phytochemical Analysis, 2007, 18, 157-160.	2.4	17
62	Sulfur-containing constituents and one 1H-pyrrole-2-carboxylic acid derivative from pineapple [Ananas comosus (L.) Merr.] fruit. Phytochemistry, 2010, 71, 2046-2051.	2.9	17
63	Phospho-NSAIDs Have Enhanced Efficacy in Mice Lacking Plasma Carboxylesterase: Implications for their Clinical Pharmacology. Pharmaceutical Research, 2015, 32, 1663-1675.	3.5	17
64	Screening and identification of inhibitors of advanced glycation endproduct formation from microalgal extracts. Food and Function, 2018, 9, 1683-1691.	4.6	17
65	DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress. Food and Function, 2019, 10, 4010-4021.	4.6	17
66	Topical phospho-sulindac (OXT-328) is effective in the treatment of non-melanoma skin cancer. International Journal of Oncology, 2012, 41, 1199-1203.	3.3	16
67	Phospho-Sulindac (OXT-328) Inhibits the Growth of Human Lung Cancer Xenografts in Mice: Enhanced Efficacy and Mitochondria Targeting by its Formulation in Solid Lipid Nanoparticles. Pharmaceutical Research, 2012, 29, 3090-3101.	3.5	16
68	6-C-(E-Phenylethenyl)Naringenin Attenuates the Stemness of Hepatocellular Carcinoma Cells by Suppressing Wnt/β-Catenin Signaling. Journal of Agricultural and Food Chemistry, 2019, 67, 13939-13947.	5.2	16
69	Oral administration of EGCG solution equivalent to daily achievable dosages of regular tea drinkers effectively suppresses miR483-3p induced metastasis of hepatocellular carcinoma cells in mice. Food and Function, 2021, 12, 3381-3392.	4.6	16
70	Advances in smart delivery of food bioactive compounds using stimuliâ€responsive carriers: Responsive mechanism, contemporary challenges, and prospects. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5449-5488.	11.7	15
71	Effects of melamine on the Maillard reaction between lactose and phenylalanine. Food Chemistry, 2010, 119, 1-6.	8.2	14
72	Red Wine High-Molecular-Weight Polyphenolic Complex: An Emerging Modulator of Human Metabolic Disease Risk and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 10907-10919.	5.2	14

#	Article	IF	CITATIONS
73	Polysaccharide-Zein Composite Nanoparticles for Enhancing Cellular Uptake and Oral Bioavailability of Curcumin: Characterization, Anti-colorectal Cancer Effect, and Pharmacokinetics. Frontiers in Nutrition, 2022, 9, 846282.	3.7	14
74	Antibrowning activity of MRPs in enzyme and fresh-cut apple slice models. Food Chemistry, 2008, 109, 379-385.	8.2	13
75	Aerosol Administration of Phospho-Sulindac Inhibits Lung Tumorigenesis. Molecular Cancer Therapeutics, 2013, 12, 1417-1428.	4.1	13
76	Nutritional and functional activities of protein from steamed, baked, and high hydrostatic pressure treated cod (Gadus morhua). Food Control, 2019, 96, 9-15.	5.5	13
77	A comparison of mutagenic PhIP and beneficial 8- <i>C</i> -(<i>E</i> -phenylethenyl)quercetin and 6- <i>C</i> -(<i>E</i> -phenylethenyl)quercetin formation under microwave and conventional heating. Food and Function, 2018, 9, 3853-3859.	4.6	12
78	Kinetic Study and Degradation Mechanism of Glycidyl Esters in both Palm Oil and Chemical Models during High-Temperature Heating. Journal of Agricultural and Food Chemistry, 2020, 68, 15319-15326.	5.2	12
79	Tricoumaroylspermidine from rose exhibits inhibitory activity against ethanol-induced apoptosis in HepG2 cells. Food and Function, 2021, 12, 5892-5902.	4.6	12
80	Investigation of new products of quercetin formed in boiling water via UPLC-Q-TOF-MS-MS analysis. Food Chemistry, 2022, 386, 132747.	8.2	12
81	Direct Trapping of Acrylamide as a Key Mechanism for Niacin's Inhibitory Activity in Carcinogenic Acrylamide Formation. Chemical Research in Toxicology, 2010, 23, 802-807.	3.3	11
82	Comparative in vitro metabolism of phospho-tyrosol-indomethacin by mice, rats and humans. Biochemical Pharmacology, 2013, 85, 1195-1202.	4.4	11
83	Review: Seafood Allergy and Potential Application of High Hydrostatic Pressure to Reduce Seafood Allergenicity. International Journal of Food Engineering, 2019, 15, .	1.5	11
84	A novel potent inhibitor of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) formation from Chinese chive: Identification, inhibitory effect and action mechanism. Food Chemistry, 2021, 345, 128753.	8.2	11
85	Unraveling the molecular targets of natural products: Insights from genomic and proteomic analyses. Proteomics - Clinical Applications, 2008, 2, 338-354.	1.6	10
86	Comparative Proteomic Analysis of Indioside D-Triggered Cell Death in HeLa Cells. Journal of Proteome Research, 2008, 7, 2050-2058.	3.7	10
87	Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside. Food Research International, 2021, 149, 110712.	6.2	10
88	Multiâ€Mechanistic Antidiabetic Potential of Astaxanthin: An Update on Preclinical and Clinical Evidence. Molecular Nutrition and Food Research, 2021, , 2100252.	3.3	10
89	Chitosan and flavonoid glycosides are promising combination partners for enhanced inhibition of heterocyclic amine formation in roast beef. Food Chemistry, 2022, 375, 131859.	8.2	10
90	Hyaluronic Acid–Zein Core-Shell Nanoparticles Improve the Anticancer Effect of Curcumin Alone or in Combination with Oxaliplatin against Colorectal Cancer via CD44-Mediated Cellular Uptake. Molecules, 2022, 27, 1498.	3.8	10

#	Article	IF	Citations
91	Topically Applied Phospho-Sulindac Hydrogel is Efficacious and Safe in the Treatment of Experimental Arthritis in Rats. Pharmaceutical Research, 2013, 30, 1471-1482.	3.5	9
92	A novel ibuprofen derivative with anti-lung cancer properties: Synthesis, formulation, pharmacokinetic and efficacy studies. International Journal of Pharmaceutics, 2014, 477, 236-243.	5.2	9
93	Chinese chive and Mongolian leek suppress heterocyclic amine formation and enhance nutritional profile of roasted cod. RSC Advances, 2020, 10, 34996-35006.	3.6	9
94	Phospho-Aspirin-2 (MDC-22) Inhibits Estrogen Receptor Positive Breast Cancer Growth Both In Vitro and In Vivo by a Redox-Dependent Effect. PLoS ONE, 2014, 9, e111720.	2.5	9
95	Use of capillary electrophoresis to evaluate protective effects of methylglyoxal scavengers on the activity of creatine kinase. Journal of Separation Science, 2008, 31, 2846-2851.	2.5	7
96	The in vitro metabolism of phospho-sulindac amide, a novel potential anticancer agent. Biochemical Pharmacology, 2014, 91, 249-255.	4.4	5
97	Simultaneous determination of three phytoecdysteroids in the roots of four medicinal plants from the genusAsparagusby HPLC. Phytochemical Analysis, 2009, 20, 58-63.	2.4	4
98	6-C-(E-Phenylethenyl)-naringenin, a Styryl Flavonoid, Inhibits Advanced Glycation End Product-Induced Inflammation by Upregulation of Nrf2. Journal of Agricultural and Food Chemistry, 2022, 70, 3842-3851.	5.2	4
99	A novel formation pathway of NÎμ-(carboxyethyl)lysine from lactic acid during high temperature exposure in wheat sourdough bread and chemical model. Food Chemistry, 2022, 388, 132942.	8.2	4
100	Oligostilbenes from <i>Gnetum</i> Species and Anticarcinogenic and Antiinflammatory Activities of Oligostilbenes. ACS Symposium Series, 2008, , 36-58.	0.5	3
101	Highâ€performance liquid chromatographic determination of creatine kinase activity influenced by methylglyoxal. Biomedical Chromatography, 2009, 23, 170-174.	1.7	3
102	Lipid-Lowering Bioactivity of Microalga Nitzschia laevis Extract Containing Fucoxanthin in Murine Model and Carcinomic Hepatocytes. Pharmaceuticals, 2021, 14, 1004.	3.8	3
103	In Vitro and In Vivo Metabolic Studies of Phospho-aspirin (MDC-22). Pharmaceutical Research, 2012, 29, 3292-3301.	3.5	2
104	Heterocyclic Amines in Foods: Analytical Methods, Formation Mechanism, and Mitigation Strategies., 2019, , 107-119.		0