Holger N Lode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2970062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Frontiers in Immunology, 2022, 13, 839783.	4.8	20
2	Clinical Phenotype and Management of Severe Neurotoxicity Observed in Patients with Neuroblastoma Treated with Dinutuximab Beta in Clinical Trials. Cancers, 2022, 14, 1919.	3.7	6
3	First-line Anti-GD2 Therapy Combined With Consolidation Chemotherapy in 3 Patients With Newly Diagnosed Metastatic Ewing Sarcoma or Ewing-like Sarcoma. Journal of Pediatric Hematology/Oncology, 2022, 44, e948-e953.	0.6	4
4	Neuroblastom. Springer Reference Medizin, 2021, , 1-14.	0.0	0
5	GD2-directed bispecific trifunctional antibody outperforms dinutuximab beta in a murine model for aggressive metastasized neuroblastoma. , 2021, 9, e002923.		11
6	Immunomonitoring of Stage IV Relapsed Neuroblastoma Patients Undergoing Haploidentical Hematopoietic Stem Cell Transplantation and Subsequent GD2 (ch14.18/CHO) Antibody Treatment. Frontiers in Immunology, 2021, 12, 690467.	4.8	10
7	Reduction of CD11b ⁺ myeloid suppressive cells augments anti-neuroblastoma immune response induced by the anti-GD ₂ antibody ch14.18/CHO. Oncolmmunology, 2020, 9, 1836768.	4.6	6
8	GD2 targeting by dinutuximab beta is a promising immunotherapeutic approach against malignant glioma. Journal of Neuro-Oncology, 2020, 147, 577-585.	2.9	18
9	Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma. , 2020, 8, e000540.		33
10	Impact of IL-2 on Treatment Tolerance in Patients With High-Risk Neuroblastoma Treated With Dinutuximab Beta-Based Immunotherapy. Frontiers in Pediatrics, 2020, 8, 582820.	1.9	6
11	Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). Cancers, 2020, 12, 309.	3.7	84
12	Neuroblastoma with intracerebral metastases and the need for neurosurgery: a single-center experience. Journal of Neurosurgery: Pediatrics, 2020, 25, 51-56.	1.3	2
13	Low CD4â²/CD25â²/CD127â» regulatory T cell- and high INF-γ levels are associated with improved survival of neuroblastoma patients treated with long-term infusion of ch14.18/CHO combined with interleukin-2. Oncolmmunology, 2019, 8, 1661194.	4.6	14
14	EZH2 Inhibition in Ewing Sarcoma Upregulates GD2 Expression for Targeting with Gene-Modified T Cells. Molecular Therapy, 2019, 27, 933-946.	8.2	69
15	Randomization of dose-reduced subcutaneous interleukin-2 (scIL2) in maintenance immunotherapy (IT) with anti-GD ₂ antibody dinutuximab beta (DB) long-term infusion (LTI) in front–line high-risk neuroblastoma patients: Early results from the HR-NBL1/SIOPEN trial Journal of Clinical Oncology, 2019, 37, 10013,10013	1.6	19
16	Randomized use of anti-GD ₂ antibody dinutuximab beta (DB) long-term infusion with and without subcutaneous interleukin-2 (scIL-2) in high-risk neuroblastoma patients with relapsed and refractory disease: Results from the SIOPEN LTI-trial Journal of Clinical Oncology, 2019, 37, 10014-10014.	1.6	14
17	Inflammatory response and treatment tolerance of longâ€ŧerm infusion of the antiâ€CD ₂ antibody ch14.18/CHO in combination with interleukinâ€2 in patients with highâ€risk neuroblastoma. Pediatric Blood and Cancer, 2018, 65, e26967.	1.5	15
18	Tolerability, response and outcome of high-risk neuroblastoma patients treated with long-term infusion of anti-GD ₂ antibody ch14.18/CHO. MAbs, 2018, 10, 55-61.	5.2	57

HOLGER N LODE

#	Article	IF	CITATIONS
19	Co-expression of IL-15 enhances anti-neuroblastoma effectivity of a tyrosine hydroxylase-directed DNA vaccination in mice. PLoS ONE, 2018, 13, e0207320.	2.5	5
20	Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncology, The, 2018, 19, 1617-1629.	10.7	252
21	Impact of HACA on Immunomodulation and Treatment Toxicity Following ch14.18/CHO Long-Term Infusion with Interleukin-2: Results from a SIOPEN Phase 2 Trial. Cancers, 2018, 10, 387.	3.7	13
22	lmmunotherapy with anti-GD2 antibody ch14.18/CHO±IL2 within the HR-NBL1/SIOPEN trial to improve outcome of high-risk neuroblastoma patients compared to historical controls Journal of Clinical Oncology, 2018, 36, 10539-10539.	1.6	6
23	PD-1 blockade augments anti-neuroblastoma immune response induced by anti-GD ₂ antibody ch14.18/CHO. Oncolmmunology, 2017, 6, e1343775.	4.6	53
24	Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, Letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget, 2017, 8, 16605-16620.	1.8	30
25	Neuroblastoma patients with high-affinity FCGR2A, -3A and stimulatory KIR 2DS2 treated by long-term infusion of anti-GD2 antibody ch14.18/CHO show higher ADCC levels and improved event-free survival. Oncolmmunology, 2016, 5, e1235108.	4.6	39
26	MYCN-targeting vaccines and immunotherapeutics. Human Vaccines and Immunotherapeutics, 2016, 12, 2257-2258.	3.3	4
27	Pharmacokinetics and pharmacodynamics of ch14.18/CHO in relapsed/refractory high-risk neuroblastoma patients treated by long-term infusion in combination with IL-2. MAbs, 2016, 8, 604-616.	5.2	43
28	Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma. PLoS ONE, 2016, 11, e0150479.	2.5	12
29	Disialoganglioside-specific human natural killer cells are effective against drug-resistant neuroblastoma. Cancer Immunology, Immunotherapy, 2015, 64, 621-634.	4.2	38
30	Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice. Cancer Immunology, Immunotherapy, 2015, 64, 1215-1227.	4.2	17
31	Functional Bioassays for Immune Monitoring of High-Risk Neuroblastoma Patients Treated with ch14.18/CHO Anti-GD2 Antibody. PLoS ONE, 2014, 9, e107692.	2.5	25
32	Validated detection of human anti-chimeric immune responses in serum of neuroblastoma patients treated with ch14.18/CHO. Journal of Immunological Methods, 2014, 407, 108-115.	1.4	13
33	Vaccination with anti-idiotype antibody ganglidiomab mediates a GD2-specific anti-neuroblastoma immune response. Cancer Immunology, Immunotherapy, 2013, 62, 999-1010.	4.2	44
34	Validated detection of anti-GD2 antibody ch14.18/CHO in serum of neuroblastoma patients using anti-idiotype antibody ganglidiomab. Journal of Immunological Methods, 2013, 398-399, 51-59.	1.4	12
35	Salmonella SL7207 application is the most effective DNA vaccine delivery method for successful tumor eradication in a murine model for neuroblastoma. Cancer Letters, 2013, 331, 167-173.	7.2	53
36	Ch14.18 antibody produced in CHO cells in relapsed or refractory Stage 4 neuroblastoma patients. MAbs, 2013, 5, 801-809.	5.2	66

HOLGER N LODE

#	Article	IF	CITATIONS
37	NK cells engineered to express a GD ₂ â€specific antigen receptor display builtâ€in ADCCâ€like activity against tumour cells of neuroectodermal origin. Journal of Cellular and Molecular Medicine, 2012, 16, 569-581.	3.6	163
38	Xenogeneic immunization with human tyrosine hydroxylase DNA vaccines suppresses growth of established neuroblastoma. Molecular Cancer Therapeutics, 2009, 8, 2392-2401.	4.1	23
39	Survivin minigene DNA vaccination is effective against neuroblastoma. International Journal of Cancer, 2009, 125, 104-114.	5.1	63
40	Nutrient mixture including vitamin C, L-lysine, L-proline, and epigallocatechin is ineffective against tumor growth and metastasis in a syngeneic neuroblastoma model. Pediatric Blood and Cancer, 2008, 50, 284-288.	1.5	7
41	A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity. Molecular Cancer Therapeutics, 2008, 7, 2241-2251.	4.1	35
42	Fractalkine (CX3CL1)– and Interleukin-2–Enriched Neuroblastoma Microenvironment Induces Eradication of Metastases Mediated by T Cells and Natural Killer Cells. Cancer Research, 2007, 67, 2331-2338.	0.9	62
43	Characterization of GD2 Peptide Mimotope DNA Vaccines Effective against Spontaneous Neuroblastoma Metastases. Cancer Research, 2006, 66, 10567-10575.	0.9	63
44	Effective Induction of Apoptosis by Mistletoe Plant Extracts in an Acute Lymphoblastic Leukemia Model Blood, 2006, 108, 1880-1880.	1.4	0
45	Anti-neuroblastoma effect of ch14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Molecular Immunology, 2005, 42, 1311-1319.	2.2	99
46	DNA Minigene Vaccination for Adjuvant Neuroblastoma Therapy. Annals of the New York Academy of Sciences, 2004, 1028, 113-121.	3.8	11
47	MDR-1 Recognition by Cytotoxic T Cells Blood, 2004, 104, 1346-1346.	1.4	0
48	Targeted Cytokines for Cancer Immunotherapy. Immunologic Research, 2000, 21, 279-288.	2.9	49
49	Natural Killer Cell–Mediated Eradication of Neuroblastoma Metastases to Bone Marrow by Targeted Interleukin-2 Therapy. Blood, 1998, 91, 1706-1715.	1.4	171
50	Approaches to Passive and Active Vaccination against Neuroblastoma. Pediatric and Adolescent Medicine, 0, , 150-162.	0.4	0