George Aggelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969758/publications.pdf Version: 2024-02-01

	19657	28297
11,571	61	105
citations	h-index	g-index
135	135	5787
docs citations		citing authors
		0
	citations 135	11,571 61 citations h-index 135 135

#	Article	IF	CITATIONS
1	Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnology Advances, 2022, 54, 107795.	11.7	85
2	Sustainable arabitol production by a newly isolated Debaryomyces prosopidis strain cultivated on biodiesel-derived glycerol. Carbon Resources Conversion, 2022, 5, 92-99.	5.9	18
3	Single Cell Oil (SCO)–Based Bioactive Compounds: l—Enzymatic Synthesis of Fatty Acid Amides Using SCOs as Acyl Group Donors and Their Biological Activities. Applied Biochemistry and Biotechnology, 2021, 193, 822-845.	2.9	9
4	Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production. Water (Switzerland), 2021, 13, 486.	2.7	28
5	Enzymatic Synthesis of Glucose Fatty Acid Esters Using SCOs as Acyl Group-Donors and Their Biological Activities. Applied Sciences (Switzerland), 2021, 11, 2700.	2.5	14
6	Bioconversion of pomegranate residues into biofuels and bioactive lipids. Journal of Cleaner Production, 2021, 323, 129193.	9.3	11
7	Microbial products from wastes and residues. FEMS Microbiology Letters, 2020, 367, .	1.8	9
8	Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review. Applied Sciences (Switzerland), 2020, 10, 7698.	2.5	46
9	Patterns of Lignocellulosic Sugar Assimilation and Lipid Production by Newly Isolated Yeast Strains From Chilean Valdivian Forest. Applied Biochemistry and Biotechnology, 2020, 192, 1124-1146.	2.9	14
10	High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS Microbiology Letters, 2020, 367, .	1.8	28
11	Biotreatment of Poultry Waste Coupled with Biodiesel Production Using Suspended and Attached Growth Microalgal-Based Systems. Sustainability, 2020, 12, 5024.	3.2	17
12	Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiology Letters, 2020, 367, .	1.8	70
13	Screening of oleaginous yeasts for lipid production using volatile fatty acids as substrate. Biomass and Bioenergy, 2020, 138, 105553.	5.7	50
14	Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2019, 103, 8585-8596.	3.6	69
15	Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World Journal of Microbiology and Biotechnology, 2019, 35, 63.	3.6	64
16	A Leptolyngbya-based microbial consortium for agro-industrial wastewaters treatment and biodiesel production. Environmental Science and Pollution Research, 2018, 25, 17957-17966.	5.3	44
17	Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Applied Microbiology and Biotechnology, 2018, 102, 2509-2523.	3.6	137
18	Data on cellular lipids of Yarrowia lipolytica grown on fatty substrates. Data in Brief, 2018, 21, 1037-1044.	1.0	10

#	Article	IF	CITATIONS
19	Agroindustrial Wastewater Treatment with Simultaneous Biodiesel Production in Attached Growth Systems Using a Mixed Microbial Culture. Water (Switzerland), 2018, 10, 1693.	2.7	29
20	Biomodification of fats and oils and scenarios of adding value on renewable fatty materials through microbial fermentations: Modelling and trials with Yarrowia lipolytica. Journal of Cleaner Production, 2018, 200, 1111-1129.	9.3	38
21	Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea – Jeddah. Journal of Cleaner Production, 2018, 198, 160-169.	9.3	64
22	Fish farm effluents are suitable growth media for <i>Nannochloropsis gaditana</i> , a polyunsaturated fatty acid producing microalga. Engineering in Life Sciences, 2018, 18, 851-860.	3.6	39
23	<i>Rhodosporidium toruloides</i> cultivated in NaClâ€enriched glucoseâ€based media: Adaptation dynamics and lipid production. Engineering in Life Sciences, 2017, 17, 237-248.	3.6	68
24	Newly isolated yeasts from Tunisian microhabitats: Lipid accumulation and fatty acid composition. Engineering in Life Sciences, 2017, 17, 226-236.	3.6	30
25	Conversion of biodieselâ€derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Engineering in Life Sciences, 2017, 17, 262-281.	3.6	84
26	Production of addedâ€value metabolites by <i>Yarrowia lipolytica</i> growing in olive mill wastewaterâ€based media under aseptic and nonâ€aseptic conditions. Engineering in Life Sciences, 2017, 17, 695-709.	3.6	75
27	Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya -based microbial consortium. Journal of Cleaner Production, 2017, 148, 185-193.	9.3	71
28	Production of secondary metabolites through glycerol fermentation under carbonâ€excess conditions by the yeasts <i>Yarrowia lipolytica</i> and <i>Rhodosporidium toruloides</i> . European Journal of Lipid Science and Technology, 2017, 119, 1600507.	1.5	71
29	Bacterial diversity of the outflows of a Polichnitos (Lesvos, Greece) hot spring, laboratory studies of a Cyanobacterium sp. strain and potential medical applications. Annals of Microbiology, 2017, 67, 643-654.	2.6	11
30	Lipid production and characterization by <i>Mortierella</i> (<i>Umbelopsis</i>) <i>isabellina</i> cultivated on lignocellulosic sugars. Journal of Applied Microbiology, 2017, 123, 1461-1477.	3.1	49
31	Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Applied Microbiology and Biotechnology, 2017, 101, 7213-7226.	3.6	71
32	Treatment of second cheese whey effluents using a <i>Choricystis</i> -based system with simultaneous lipid production. Journal of Chemical Technology and Biotechnology, 2016, 91, 2349-2359.	3.2	41
33	Bioconversion of olive mill wastewater into high-added value products. Journal of Cleaner Production, 2016, 139, 957-969.	9.3	92
34	High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. Journal of Biotechnology, 2016, 234, 116-126.	3.8	116
35	Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. Journal of Cleaner Production, 2016, 133, 899-909.	9.3	68
36	Production of polyunsaturated single cell oils possessing antimicrobial and anticancer properties. Annals of Microbiology, 2016, 66, 937-948.	2.6	37

#	Article	IF	CITATIONS
37	Adaptation of Volvariella volvacea metabolism in high carbon to nitrogen ratio media. Food Chemistry, 2016, 196, 272-280.	8.2	23
38	Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology, 2016, 37, 24-35.	6.6	261
39	Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii. Microbiology (United) Tj ETQq1 1 0.78431	14 rgBT /C 1.8)verlock 10 12
40	Fatty acid lithium salts from <i>Cunninghamella echinulata</i> have cytotoxic and genotoxic effects on HLâ€60 human leukemia cells. Engineering in Life Sciences, 2015, 15, 243-253.	3.6	20
41	Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 2015, 6, 453.	3.5	254
42	Oleaginous yeast <i>Cryptococcus curvatus</i> exhibits interplay between biosynthesis of intracellular sugars and lipids. European Journal of Lipid Science and Technology, 2015, 117, 657-672.	1.5	68
43	Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. Journal of Applied Microbiology, 2015, 118, 911-927.	3.1	126
44	Lipid production by the filamentous cyanobacterium Limnothrix sp. growing in synthetic wastewater in suspended- and attached-growth photobioreactor systems. Annals of Microbiology, 2015, 65, 1941-1948.	2.6	46
45	Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis. Biomass and Bioenergy, 2015, 80, 307-315.	5.7	22
46	Feasibility of raw glycerol conversion into single cell oil by zygomycetes under nonâ€aseptic conditions. Biotechnology and Bioengineering, 2015, 112, 827-831.	3.3	35
47	Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess and Biosystems Engineering, 2014, 37, 1385-1400.	3.4	46
48	Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology (United Kingdom), 2014, 160, 807-817.	1.8	90
49	Aerated vs non-aerated conversions of molasses and olive mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Industrial Crops and Products, 2014, 56, 83-93.	5.2	56
50	The olive mill wastewater as substrate for single cell oil production by Zygomycetes. Journal of Biotechnology, 2014, 170, 50-59.	3.8	62
51	Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 2014, 32, 1476-1493.	11.7	317
52	Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. Journal of Biotechnology, 2013, 168, 303-314.	3.8	84
53	Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology, 2013, 164, 318-329.	3.8	159
54	Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. Journal of Biotechnology, 2013, 168, 303-14.	3.8	20

#	Article	IF	CITATIONS
55	Adaptation dynamics of Clostridium butyricum in high 1,3-propanediol content media. Applied Microbiology and Biotechnology, 2012, 95, 1541-1552.	3.6	14
56	Improving Fatty Acid Composition of Lipids Synthesized by <i>Brachionus plicatilis</i> in Large Scale Experiments. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 2047-2055.	1.9	17
57	Mushroom Polysaccharides and Lipids Synthesized in Liquid Agitated and Static Cultures. Part I: Screening Various Mushroom Species. Applied Biochemistry and Biotechnology, 2012, 167, 536-551.	2.9	31
58	Mushroom Polysaccharides and Lipids Synthesized in Liquid Agitated and Static Cultures. Part II: Study of Volvariella volvacea. Applied Biochemistry and Biotechnology, 2012, 167, 1890-1906.	2.9	38
59	Lipids Containing Polyunsaturated Fatty Acids Synthesized by Zygomycetes Grown on Glycerol. Applied Biochemistry and Biotechnology, 2012, 166, 146-158.	2.9	96
60	Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Journal of Applied Microbiology, 2011, 110, 1138-1150.	3.1	107
61	Modeling of oleaginous fungal biofilm developed on semi-solid media. Bioresource Technology, 2011, 102, 9697-9704.	9.6	12
62	Single cell oil production from rice hulls hydrolysate. Bioresource Technology, 2011, 102, 9737-9742.	9.6	197
63	Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation. Bioresource Technology, 2011, 102, 10625-10632.	9.6	38
64	Lipid synthesized by microâ€algae grown in laboratory―and industrialâ€scale bioreactors. Engineering in Life Sciences, 2011, 11, 52-58.	3.6	57
65	Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 2011, 113, 1031-1051.	1.5	530
66	Lipids of oleaginous yeasts. Part II: Technology and potential applications. European Journal of Lipid Science and Technology, 2011, 113, 1052-1073.	1.5	325
67	Modeling of single ell oil production under nitrogenâ€limited and substrate inhibition conditions. Biotechnology and Bioengineering, 2011, 108, 1049-1055.	3.3	101
68	Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy, 2011, 36, 1097-1108.	8.8	255
69	<i>Yarrowia lipolytica</i> : A model microorganism used for the production of tailorâ€made lipids. European Journal of Lipid Science and Technology, 2010, 112, 639-654.	1.5	167
70	Commercial sugars as substrates for lipid accumulation in <i>Cunninghamella echinulata</i> and <i>Mortierella isabellina</i> fungi. European Journal of Lipid Science and Technology, 2010, 112, 1048-1057.	1.5	102
71	Characterization of olive fruit microflora and its effect on olive oil volatile compounds biogenesis. European Journal of Lipid Science and Technology, 2010, 112, 1024-1032.	1.5	17
72	Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresource Technology, 2010, 101, 2351-2358.	9.6	280

#	Article	IF	CITATIONS
73	Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresource Technology, 2010, 101, 1385-1388.	9.6	140
74	Suitability of Low-Cost Sugars as Substrates for Lipid Production by the FungusThamnidium elegans. Energy & Fuels, 2010, 24, 4078-4086.	5.1	61
75	Biosynthesis of lipids and organic acids by <i>Yarrowia lipolytica</i> strains cultivated on glucose. European Journal of Lipid Science and Technology, 2009, 111, 1221-1232.	1.5	142
76	Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by <i>Yarrowia lipolytica</i> . Lipid Technology, 2009, 21, 83-87.	0.3	193
77	Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass and Bioenergy, 2009, 33, 573-580.	5.7	294
78	Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresource Technology, 2009, 100, 6118-6120.	9.6	96
79	Susceptibility to peroxidation of the major mycelial lipids of <i>Cunninghamella echinulata</i> . European Journal of Lipid Science and Technology, 2008, 110, 1062-1067.	1.5	8
80	Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass and Bioenergy, 2008, 32, 60-71.	5.7	349
81	Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresource Technology, 2008, 99, 2419-2428.	9.6	175
82	Î ³ -Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresource Technology, 2008, 99, 5986-5990.	9.6	80
83	Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in <i>Cunninghamella echinulata</i> . Journal of Applied Microbiology, 2008, 105, 1062-1070.	3.1	113
84	Dynamics of free-living nitrogen-fixing bacterial populations and nitrogen fixation in a two-prey–one-predator system. Ecological Modelling, 2008, 218, 323-338.	2.5	4
85	Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production by Yarrowia lipolytica. Electronic Journal of Biotechnology, 2007, 10, 0-0.	2.2	116
86	Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology, 2007, 109, 1060-1070.	1.5	142
87	Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme and Microbial Technology, 2007, 40, 1321-1327.	3.2	131
88	Dynamics of free-living nitrogen-fixing bacterial populations in antagonistic conditions. Ecological Modelling, 2007, 200, 243-253.	2.5	11
89	Studies on bacteriocin (thermophilin T) production by Streptococcus thermophilus ACA-DC 0040 in batch and fed-batch fermentation modes. Antonie Van Leeuwenhoek, 2007, 92, 207-220.	1.7	16
90	Growth dynamics of Azospirillum lipoferum at steady and transitory states in the presence of NH. Journal of Applied Microbiology, 2006, 100, 286-295.	3.1	5

#	Article	IF	CITATIONS
91	Lipids of Cunninghamella echinulata with emphasis to Î ³ -linolenic acid distribution among lipid classes. Applied Microbiology and Biotechnology, 2006, 73, 676-683.	3.6	90
92	Influence of Glucose and Saturated Free-Fatty Acid Mixtures on Citric Acid and Lipid Production by Yarrowia lipolytica. Current Microbiology, 2006, 52, 134-142.	2.2	137
93	Prey–predator dynamics with predator switching regulated by a catabolic repression control mode. Ecological Modelling, 2005, 183, 451-462.	2.5	16
94	Dynamics of a two-prey–one-predator system with predator switching regulated by a catabolic repression control-like mode. Ecological Modelling, 2005, 186, 345-357.	2.5	8
95	Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology, 2004, 97, 867-875.	3.1	158
96	Newly isolated bacterial strains belonging to Bacillaceae (Bacillus sp.) and Micrococcaceae accelerate death of the honey bee mite, Varroa destructor (V. jacobsoni), in laboratory assays. Biotechnology Letters, 2004, 26, 529-532.	2.2	19
97	The effect of raw glycerol concentration on the production of 1,3-propanediol byClostridium butyricum. Journal of Chemical Technology and Biotechnology, 2004, 79, 1189-1196.	3.2	92
98	Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 2004, 95, 287-291.	9.6	207
99	Accumulation of a Cocoa-Butter-Like Lipid by Yarrowia lipolytica Cultivated on Agro-Industrial Residues. Current Microbiology, 2003, 46, 124-130.	2.2	166
100	Modeling Lipid Accumulation and Degradation in Yarrowia lipolytica Cultivated on Industrial Fats. Current Microbiology, 2003, 46, 398-402.	2.2	137
101	Metabolic activities in Azospirillum lipoferum grown in the presence of NH 4 +. Applied Microbiology and Biotechnology, 2003, 62, 574-578.	3.6	15
102	Selective uptake of fatty acids by the yeastYarrowia lipolytica. European Journal of Lipid Science and Technology, 2003, 105, 651-655.	1.5	88
103	Modelling aspects of the biotechnological valorization of raw glycerol: production of citric acid byYarrowia lipolytica and 1,3-propanediol byClostridium butyricum. Journal of Chemical Technology and Biotechnology, 2003, 78, 542-547.	3.2	87
104	Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Research, 2003, 37, 3897-3904.	11.3	196
105	Mycelial fatty acid composition of Pleurotus spp. and its application in the intrageneric differentiation. Mycological Research, 2002, 106, 925-929.	2.5	29
106	Modeling growth and biochemical activities of Azospirillum spp Applied Microbiology and Biotechnology, 2002, 58, 352-357.	3.6	23
107	Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Applied Microbiology and Biotechnology, 2002, 58, 308-312.	3.6	252
108	Production of Î ³ -linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Applied Microbiology and Biotechnology, 2002, 58, 303-307.	3.6	112

#	Article	IF	CITATIONS
109	Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Applied Microbiology and Biotechnology, 2002, 59, 353-360.	3.6	100
110	Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 2002, 82, 43-49.	9.6	404
111	Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresource Technology, 2002, 84, 251-257.	9.6	204
112	Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 2002, 92, 737-744.	3.1	283
113	Grape skins as a natural support for yeast immobilization. Biotechnology Letters, 2002, 24, 1331-1335.	2.2	38
114	Lipid and Î ³ -linolenic acid accumulation in strains of zygomycetes growing on glucose. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 341-346.	1.9	102
115	Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek, 2001, 80, 215-224.	1.7	194
116	Effect of aqueous extracts of some plants of Lamiaceae family on the growth of Yarrowia lipolytica. International Journal of Food Microbiology, 2001, 64, 175-181.	4.7	35
117	Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate. Journal of Biotechnology, 2000, 80, 119-125.	3.8	7
118	An opinion on the "kinetics of nitrogen fixation― International Biodeterioration and Biodegradation, 1999, 44, 79.	3.9	0
119	Title is missing!. Biotechnology Letters, 1999, 21, 747-749.	2.2	53
120	Growth of Candida boidinii in a methanol-limited continuous culture and the formation of methanol-degrading enzymes. Journal of Biotechnology, 1999, 72, 127-139.	3.8	8
121	Modelling of simultaneous production of polygalacturonase and exopolysaccharide by Aureobasidium pullulans ATHUM 2915. Antonie Van Leeuwenhoek, 1998, 73, 155-162.	1.7	27
122	Effect of a Teucrium polium L. extract on the growth and fatty acid composition of Saccharomyces cerevisiae and Yarrowia lipolytica. Antonie Van Leeuwenhoek, 1998, 73, 195-198.	1.7	17
123	A novel modelling approach for predicting microbial growth in a raw cured meat product stored at 3°C and at 12°C in air. International Journal of Food Microbiology, 1998, 43, 39-52.	4.7	15
124	Prediction of lipid accumulation-degradation in oleaginous micro-organisms growing on vegetable oils. , 1997, 72, 159-165.		72
125	Microbial fatty acid specificity. Folia Microbiologica, 1997, 42, 117-120.	2.3	49
126	Two alternative pathways for substrate assimilation byMucor circinelloides. Folia Microbiologica, 1996, 41, 254-256.	2.3	18

#	Article	IF	CITATIONS
127	Composition of lipids produced by some strains ofCandida species. Production of single-cell oil in a chemostat culture. Folia Microbiologica, 1996, 41, 299-302.	2.3	17
128	A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of <i>Mucor circinelloides</i> CBS 172-27 on a vegetable oil. Grasas Y Aceites, 1995, 46, 169-1873.	0.9	41
129	A mathematical model for the study of lipid accumulation in oleaginous microorganisms. II. Study of cellular lipids of <i>Mucor circinelloides</i> during growth on a vegetable oil. Grasas Y Aceites, 1995, 46, 245-250.	0.9	24
130	Lipolytic and microbial changes during the natural fermentation and ripening of Greek dry sausages. Meat Science, 1993, 35, 371-385.	5.5	73
131	Specificity of <i>Mucor miehei</i> lipase on methyl ester substrates. Grasas Y Aceites, 1993, 44, 331-334.	0.9	9