Martin Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969376/publications.pdf Version: 2024-02-01

	840776	434195
961	11	31
citations	h-index	g-index
33	33	1582
docs citations	times ranked	citing authors
	citations 33	961 11 citations h-index 33 33

#	Article	IF	CITATIONS
1	Embedding Quaternary V _{1–<i>x</i>–<i>y</i>} Sr _{<i>x</i>} W _{<i>y</i>} O ₂ into Multilayer Systems to Enhance Its Thermochromic Properties for Smart Glass Applications. ACS Applied Electronic Materials, 2022, 4, 513-520.	4.3	4
2	Phase Control of Multivalent Vanadium Oxides VO _{<i>x</i>} by lonâ€Beam Sputterâ€Deposition. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	4
3	Advantageous optical characteristics of tantalum vanadium oxide as counter electrode in electrochromic devices. Journal of Materials Science, 2022, 57, 12810-12823.	3.7	3
4	Electrochromic switching of tungsten oxide films grown by reactive ion-beam sputter deposition. Journal of Materials Science, 2021, 56, 615-628.	3.7	21
5	Determining the band alignment of copper-oxide gallium-oxide heterostructures. Journal of Applied Physics, 2021, 129, .	2.5	6
6	Investigation of Sputterâ€Deposited Thin Films of Lithium Phosphorous Sulfuric Oxynitride (LiPSON) as Solid Electrolyte for Electrochromic Devices. Physica Status Solidi (B): Basic Research, 2021, 258, 2100032.	1.5	3
7	Investigations of the Solid Electrolyte Interphase Using Xâ€Ray Photoelectron Spectroscopy In situ Experiment on the Lithiumâ€Based Solid Electrolyte LiPSON. Physica Status Solidi (B): Basic Research, 2020, 257, 1900336.	1.5	9
8	Structural and Electrochemical Characterization of Radio Frequency Magnetronâ€5puttered LiCoO 2 Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000382.	1.8	2
9	Controlled thin-film deposition of α or β Ga2O3 by ion-beam sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	6
10	Assessing the benefits of customizable ion-beam profiles for homogeneously coating or treating the surfaces of non-planar substrates. Review of Scientific Instruments, 2020, 91, 013905.	1.3	2
11	Progress in Sputter Growth of β â€Ga 2 O 3 by Applying Pulsedâ€Mode Operation. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901009.	1.8	4
12	Optimizing the Stoichiometry of Ga 2 O 3 Grown by RFâ€Magnetron Sputter Deposition by Correlating Optical Properties and Growth Parameters. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900385.	1.8	8
13	Assessing a growth anomaly in ion-beam sputtered non-stoichiometric NiO <i>x</i> . Journal of Applied Physics, 2019, 126, .	2.5	0
14	Thermally Switchable Terahertz Metasurface Devices. , 2019, , .		1
15	Electrochemical and Optical Properties of Lithium Ion Conducting LiPSON Solid Electrolyte Films. Physica Status Solidi (B): Basic Research, 2019, 256, 1900047.	1.5	8
16	Controlling the p-type conductivity of SnO by doping with nitrogen and hydrogen. Journal of Applied Physics, 2019, 125, .	2.5	14
17	Materials processing using radio-frequency ion-sources: Ion-beam sputter-deposition and surface treatment. Review of Scientific Instruments, 2019, 90, 023901.	1.3	27
18	Electron paramagnetic resonance signatures of Co2 + and Cu2 + in <i>l²</i>	3.3	11

MARTIN BECKER

#	Article	IF	CITATIONS
19	Thermally switchable terahertz wavefront metasurface modulators based on the insulator-to-metal transition of vanadium dioxide. Optics Express, 2019, 27, 20347.	3.4	44
20	On the Growth of Stannic Oxide by Ion Beam Sputter Deposition (IBSD). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700623.	1.8	4
21	Impact of Composition <i>x</i> on the Refractive Index of Ni <i>_x</i> O. Physica Status Solidi (B): Basic Research, 2018, 255, 1700463.	1.5	9
22	Analysis of the optical parameters of amorphous ternary oxides Sn 1 â^' xZn xO and Sn 1 â^' xNi xO processed by combinatorial ion-beam sputter deposition. Journal of Applied Physics, 2018, 124, 155701.	2.5	2
23	Assessing the growth window of stannous oxide by ion beam sputter deposition (IBSD). Journal of Crystal Growth, 2018, 498, 17-24.	1.5	2
24	Band alignment of Al <i>x</i> Ga1– <i>x</i> N/Cu2O heterojunctions in dependence on alloy composition <i>x</i> and its effect on the photovoltaic properties. Journal of Applied Physics, 2018, 123, .	2.5	2
25	NiO films on sapphire as potential antiferromagnetic pinning layers. Journal of Applied Physics, 2017, 122, .	2.5	16
26	Raman studies of the intermediate tin-oxide phase. Physical Review Materials, 2017, 1, .	2.4	54
27	Synthesis of tin oxides SnO _{2–<i>x</i>} in the entire composition range (<i>x</i> = 0 to 1) by ionâ€beam sputterâ€deposition. Physica Status Solidi - Rapid Research Letters, 2015, 9, 326-330.	2.4	23
28	Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2. Journal of Applied Physics, 2015, 117, .	2.5	61
29	Polycrystalline SnO2 films grown by chemical vapor deposition on quartz glass. Vacuum, 2015, 122, 347-352.	3.5	47
30	Stannic oxide thin film growth via ion-beam-sputtering. Thin Solid Films, 2014, 553, 26-29.	1.8	11
31	Deposition of tin oxides by Ion-Beam-Sputtering. Materials Research Society Symposia Proceedings, 2012, 1494, 153-158.	0.1	4
32	Binary copper oxide semiconductors: From materials towards devices. Physica Status Solidi (B): Basic Research, 2012, 249, 1487-1509.	1.5	547