
Bogumil J Karas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2969199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and synthesis of a minimal bacterial genome. Science, 2016, 351, aad6253.	12.6	1,077
2	A Cytokinin Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis. Science, 2007, 315, 101-104.	12.6	475
3	Designer diatom episomes delivered by bacterial conjugation. Nature Communications, 2015, 6, 6925.	12.8	249
4	An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in <i>Phaeodactylum tricornutum</i> . ACS Synthetic Biology, 2018, 7, 328-338.	3.8	124
5	Conservation of <i>Lotus</i> and Arabidopsis Basic Helix-Loop-Helix Proteins Reveals New Players in Root Hair Development Â. Plant Physiology, 2009, 151, 1175-1185.	4.8	113
6	Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature, 2018, 555, 534-537.	27.8	106
7	Genetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci. Molecular Plant-Microbe Interactions, 2006, 19, 80-91.	2.6	94
8	Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nature Communications, 2019, 10, 4544.	12.8	78
9	<i>Lotus japonicus symRKâ€14</i> uncouples the cortical and epidermal symbiotic program. Plant Journal, 2011, 67, 929-940.	5.7	71
10	Genetic requirements for cell division in a genomically minimal cell. Cell, 2021, 184, 2430-2440.e16.	28.9	66
11	Assembly of Large, High G+C Bacterial DNA Fragments in Yeast. ACS Synthetic Biology, 2012, 1, 267-273.	3.8	65
12	Direct transfer of whole genomes from bacteria to yeast. Nature Methods, 2013, 10, 410-412.	19.0	64
13	Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti Involves the Nodulation Factor-Dependent Induction of Root Hairs. Plant Physiology, 2005, 137, 1331-1344.	4.8	63
14	Diatom centromeres suggest a mechanism for nuclear DNA acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6015-E6024.	7.1	62
15	Assembly of eukaryotic algal chromosomes in yeast. Journal of Biological Engineering, 2013, 7, 30.	4.7	57
16	Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast. Nucleic Acids Research, 2012, 40, 10375-10383.	14.5	56
17	Technological challenges and milestones for writing genomes. Science, 2019, 366, 310-312.	12.6	50
18	Genetic Suppressors of the Lotus japonicus har1-1 Hypernodulation Phenotype. Molecular Plant-Microbe Interactions, 2006, 19, 1082-1091.	2.6	45

BOGUMIL J KARAS

#	Article	IF	CITATIONS
19	Cloning the <i>Acholeplasma laidlawii</i> PG-8A Genome in <i>Saccharomyces cerevisiae</i> as a Yeast Centromeric Plasmid. ACS Synthetic Biology, 2012, 1, 22-28.	3.8	43
20	Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nature Protocols, 2014, 9, 743-750.	12.0	37
21	Strategies for cloning and manipulating natural and synthetic chromosomes. Chromosome Research, 2015, 23, 57-68.	2.2	30
22	Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling. Genome Research, 2015, 25, 435-444.	5.5	27
23	Designer Sinorhizobium meliloti strains and multi-functional vectors enable direct inter-kingdom DNA transfer. PLoS ONE, 2019, 14, e0206781.	2.5	21
24	Plasmid-based complementation of large deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 editing. Scientific Reports, 2020, 10, 13879.	3.3	16
25	Rapid method for generating designer algal mitochondrial genomes. Algal Research, 2020, 50, 102014.	4.6	15
26	Intragenic complementation at the <i>Lotus japonicus CELLULOSE SYNTHASE-LIKE D1</i> locus rescues root hair defects. Plant Physiology, 2021, 186, 2037-2050.	4.8	13
27	Telomere-to-telomere genome assembly of <i>Phaeodactylum tricornutum</i> . PeerJ, 0, 10, e13607.	2.0	13
28	Rescue of mutant fitness defects using in vitro reconstituted designer transposons in Mycoplasma mycoides. Frontiers in Microbiology, 2014, 5, 369.	3.5	12
29	Direct Transfer of a Mycoplasma mycoides Genome to Yeast Is Enhanced by Removal of the Mycoides Glycerol Uptake Factor Gene glpF. ACS Synthetic Biology, 2019, 8, 239-244.	3.8	10
30	Phosphate-regulated expression of the SARS-CoV-2 receptor-binding domain in the diatom Phaeodactylum tricornutum for pandemic diagnostics. Scientific Reports, 2022, 12, 7010.	3.3	10
31	Trans-Kingdom Conjugation within Solid Media from Escherichia coli to Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2019, 20, 5212.	4.1	9
32	Delivery of the Cas9 or TevCas9 System into Phaeodactylum tricornutum via Conjugation of Plasmids from a Bacterial Donor. Bio-protocol, 2018, 8, e2974.	0.4	9
33	Development of a Transformation Method for Metschnikowia borealis and other CUG-Serine Yeasts. Genes, 2019, 10, 78.	2.4	7
34	Genetic supressors of Lotus japonicus har1-1 hypernodulation show altered interactions with Glomus intraradices. Functional Plant Biology, 2006, 33, 749.	2.1	7
35	Towards synthetic diatoms: The Phaeodactylum tricornutum Pt-syn 1.0 project. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100611.	5.9	7
36	Conjugation-Based Genome Engineering in <i>Deinococcus radiodurans</i> . ACS Synthetic Biology, 2022, 11, 1068-1076.	3.8	5

#	Article	IF	CITATIONS
37	Designer endosymbionts: Converting free-living bacteria into organelles. Current Opinion in Systems Biology, 2020, 24, 41-50.	2.6	3
38	Cloning of Thalassiosira pseudonana's Mitochondrial Genome in Saccharomyces cerevisiae and Escherichia coli. Biology, 2020, 9, 358.	2.8	3