
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2968448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 2010, 5, 015101.	5.2	829
2	Epidemiological time series studies of PM _{2.5} and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax, 2014, 69, 660-665.	5.6	760
3	Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, 2020, 203, 103118.	9.1	630
4	Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 2019, 100, 423-444.	3.3	590
5	Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dynamics, 2011, 36, 2399-2417.	3.8	428
6	Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment, 2011, 115, 1733-1742.	11.0	411
7	Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 2021, 780, 146546.	8.0	374
8	Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. Journal of Geophysical Research, 2008, 113, .	3.3	282
9	Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 2019, 6, 796-809.	9.5	271
10	Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nature Communications, 2016, 7, 12574.	12.8	265
11	Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Science of the Total Environment, 2021, 754, 141948.	8.0	245
12	Increased mass over the Tibetan Plateau: From lakes or glaciers?. Geophysical Research Letters, 2013, 40, 2125-2130.	4.0	242
13	A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere, 2010, 4, 419-433.	3.9	239
14	Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmospheric Chemistry and Physics, 2008, 8, 1343-1352.	4.9	233
15	Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Clobal and Planetary Change, 2010, 71, 124-133.	3.5	231
16	Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric Chemistry and Physics, 2015, 15, 1573-1584.	4.9	213
17	Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	186
18	Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Scientific Reports, 2015, 5, 9580.	3.3	180

#	Article	IF	CITATIONS
19	Rapid warming in the Tibetan Plateau from observations and <scp>CMIP5</scp> models in recent decades. International Journal of Climatology, 2016, 36, 2660-2670.	3.5	176
20	Importance of atmospheric transport for microplastics deposited in remote areas. Environmental Pollution, 2019, 254, 112953.	7.5	172
21	Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. Journal of Glaciology, 2006, 52, 537-545.	2.2	162
22	Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Science Reviews, 2020, 201, 103043.	9.1	162
23	Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Science Reviews, 2021, 217, 103625.	9.1	157
24	Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas. Atmospheric Chemistry and Physics, 2015, 15, 6007-6021.	4.9	156
25	Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophysical Research Letters, 2008, 35, .	4.0	153
26	Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics. Science of the Total Environment, 2021, 758, 143634.	8.0	153
27	Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric Environment, 2007, 41, 1180-1187.	4.1	147
28	A comparison of heat wave climatologies and trends in China based on multiple definitions. Climate Dynamics, 2017, 48, 3975-3989.	3.8	147
29	Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dynamics, 2015, 45, 791-806.	3.8	145
30	Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmospheric Research, 2018, 203, 141-163.	4.1	145
31	Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmospheric Research, 2007, 85, 351-360.	4.1	144
32	Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research, 2019, 220, 20-33.	4.1	144
33	Atmospheric wet deposition of trace elements to central Tibetan Plateau. Applied Geochemistry, 2010, 25, 1415-1421.	3.0	143
34	Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Science Bulletin, 2010, 55, 2072-2078.	1.7	140
35	A review of black carbon in snow and ice and its impact on the cryosphere. Earth-Science Reviews, 2020, 210, 103346.	9.1	139
36	Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	138

#	Article	IF	CITATIONS
37	Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. Journal of Geophysical Research, 1997, 102, 10121-10132.	3.3	136
38	Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. International Journal of Climatology, 2013, 33, 1337-1347.	3.5	133
39	Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Science Reviews, 2020, 210, 103349.	9.1	132
40	Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the "Water Tower of Asia― Science of the Total Environment, 2019, 649, 571-581.	8.0	131
41	Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 2016, 50, 2859-2869.	10.0	130
42	Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 2020, 7, 492-495.	9.5	128
43	PM2.5 and O3 pollution during 2015–2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts. Environmental Pollution, 2020, 264, 114694.	7.5	124
44	Glaciochemical records from a Mt. Everest ice core: relationship to atmospheric circulation over Asia. Atmospheric Environment, 2002, 36, 3351-3361.	4.1	123
45	Historical Trends of Atmospheric Black Carbon on Tibetan Plateau As Reconstructed from a 150-Year Lake Sediment Record. Environmental Science & Technology, 2013, 47, 2579-2586.	10.0	123
46	The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities. Atmospheric Chemistry and Physics, 2014, 14, 11117-11128.	4.9	117
47	Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environmental Science & Technology, 2019, 53, 3471-3479.	10.0	115
48	Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles, 2009, 13, 411-423.	2.3	114
49	Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environmental Pollution, 2009, 157, 2261-2265.	7.5	114
50	Lightâ€absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6915-6933.	3.3	114
51	The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt. Everest, central Himalayas, China. Atmospheric Environment, 2008, 42, 6699-6709.	4.1	112
52	Baseline continental aerosol over the central Tibetan plateau and a case study of aerosol transport from South Asia. Atmospheric Environment, 2011, 45, 7370-7378.	4.1	112
53	Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Global and Planetary Change, 2010, 72, 11-24.	3.5	109
54	Evaluation of extreme climate events using a regional climate model for China. International Journal of Climatology, 2015, 35, 888-902.	3.5	108

#	Article	IF	CITATIONS
55	Global warming weakening the inherent stability of glaciers and permafrost. Science Bulletin, 2019, 64, 245-253.	9.0	108
56	Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. Journal of Glaciology, 2013, 59, 137-148.	2.2	105
57	Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas. Atmospheric Environment, 2004, 38, 2819-2829.	4.1	104
58	Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. Journal of Hydrology, 2013, 491, 89-99.	5.4	104
59	Atmospheric Transport of Mercury to the Tibetan Plateau. Environmental Science & Technology, 2007, 41, 7632-7638.	10.0	103
60	Gradient distribution of persistent organic contaminants along northern slope of central-Himalayas, China. Science of the Total Environment, 2006, 372, 193-202.	8.0	101
61	Elemental and individual particle analysis of atmospheric aerosols from high Himalayas. Environmental Monitoring and Assessment, 2010, 160, 323-335.	2.7	100
62	Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau. Environmental Pollution, 2012, 161, 154-161.	7.5	99
63	Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Science Bulletin, 2013, 58, 3815-3829.	1.7	99
64	ROOF OF THE WORLD: Tibetan Observation and Research Platform. Bulletin of the American Meteorological Society, 2008, 89, 1487-1492.	3.3	98
65	Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity with sites across the Tibetan Plateau on $50\hat{a}\in$ 100 year timescales. Journal of Glaciology, 2008, 54, 343-352.	2.2	96
66	Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling. Atmospheric Chemistry and Physics, 2015, 15, 7103-7125.	4.9	96
67	Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Climate Dynamics, 2015, 45, 2831-2846.	3.8	95
68	Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau. Atmospheric Research, 2009, 92, 42-48.	4.1	93
69	Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. Journal of Environmental Sciences, 2010, 22, 1748-1756.	6.1	93
70	Mercury Distribution and Deposition in Glacier Snow over Western China. Environmental Science & Technology, 2012, 46, 5404-5413.	10.0	93
71	Chemical Composition of Microbe-Derived Dissolved Organic Matter in Cryoconite in Tibetan Plateau Glaciers: Insights from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Analysis. Environmental Science & Technology, 2016, 50, 13215-13223.	10.0	92
72	Concentrations and light absorption characteristics of carbonaceous aerosol in PM 2.5 and PM 10 of Lhasa city, the Tibetan Plateau. Atmospheric Environment, 2016, 127, 340-346.	4.1	91

#	Article	IF	CITATIONS
73	Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Science of the Total Environment, 2017, 587-588, 482-490.	8.0	91
74	Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmospheric Chemistry and Physics, 2017, 17, 8867-8885.	4.9	91
75	Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies. Journal of Glaciology, 2007, 53, 673-676.	2.2	89
76	Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere, 2018, 12, 413-431.	3.9	89
77	An Examination of Temperature Trends at High Elevations Across the Tibetan Plateau: The Use of MODIS LST to Understand Patterns of Elevationâ€Dependent Warming. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5738-5756.	3.3	89
78	Reduction in northward incursions of the South Asian monsoon since â^1⁄41400 AD inferred from a Mt. Everest ice core. Geophysical Research Letters, 2007, 34, .	4.0	88
79	Climate change over the Yarlung Zangbo River Basin during 1961–2005. Journal of Chinese Geography, 2007, 17, 409-420.	3.9	88
80	Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles, 2020, 24, 447-473.	2.3	88
81	Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmospheric Environment, 2007, 41, 7208-7218.	4.1	87
82	Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmospheric Environment, 2014, 95, 231-238.	4.1	86
83	Double-Nested Dynamical Downscaling Experiments over the Tibetan Plateau and Their Projection of Climate Change under Two RCP Scenarios. Journals of the Atmospheric Sciences, 2013, 70, 1278-1290.	1.7	85
84	Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley, Nepal. Science of the Total Environment, 2015, 538, 86-92.	8.0	85
85	Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model. Atmospheric Chemistry and Physics, 2018, 18, 11507-11527.	4.9	85
86	Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes. Atmospheric Environment, 2012, 62, 540-550.	4.1	84
87	Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001–2010). Water Resources Research, 2012, 48, .	4.2	83
88	Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmospheric Chemistry and Physics, 2016, 16, 14937-14957.	4.9	83
89	Trace elements and lead isotopic composition of PM10 in Lhasa, Tibet. Atmospheric Environment, 2011, 45, 6210-6215.	4.1	82
90	Cryospheric Science: research framework and disciplinary system. National Science Review, 2018, 5, 255-268.	9.5	82

#	Article	IF	CITATIONS
91	Recent temperature increase recorded in an ice core in the source region of Yangtze River. Science Bulletin, 2007, 52, 825-831.	1.7	81
92	Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. International Journal of Applied Earth Observation and Geoinformation, 2012, 17, 3-11.	2.8	79
93	Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 2015, 9, 1213-1222.	3.9	78
94	Humic-Like Substances (HULIS) in Aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, Light Absorption Properties, and Sources. Environmental Science & Technology, 2018, 52, 7203-7211.	10.0	78
95	Hydrological system analysis and modelling of the Nam Co basin in Tibet. Advances in Geosciences, 0, 27, 29-36.	12.0	78
96	Indoor air pollution from burning yak dung as a household fuel in Tibet. Atmospheric Environment, 2015, 102, 406-412.	4.1	77
97	Wet precipitation chemistry at a high-altitude site (3,326Âm a.s.l.) in the southeastern Tibetan Plateau. Environmental Science and Pollution Research, 2013, 20, 5013-5027.	5.3	75
98	Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam) Tj ETQqO	0 0 _. rgBT /(Dverlock 10 1
99	Modeling the Origin of Anthropogenic Black Carbon and Its Climatic Effect Over the Tibetan Plateau and Surrounding Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 671-692.	3.3	75
100	Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Science of the Total Environment, 2018, 639, 1220-1232.	8.0	75
101	Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiology Letters, 2006, 265, 98-105.	1.8	72
102	Pre-monsoon air quality over Lumbini, aÂworld heritage site along the Himalayan foothills. Atmospheric Chemistry and Physics, 2017, 17, 11041-11063.	4.9	70
103	Preliminary Health Risk Assessment of Potentially Toxic Metals in Surface Water of the Himalayan Rivers, Nepal. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 855-862.	2.7	69
104	Shifts of dust source regions over central Asia and the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet. Atmospheric Environment, 2008, 42, 2358-2368.	4.1	68
105	Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau. Climate Research, 2010, 42, 57-64.	1.1	68
106	Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nature Climate Change, 2020, 10, 1037-1044.	18.8	68
107	New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China. Science of the Total Environment, 2015, 529, 101-113.	8.0	67
108	From brightening to dimming in sunshine duration over the eastern and central Tibetan Plateau (1961–2005). Theoretical and Applied Climatology, 2010, 101, 445-457.	2.8	66

#	Article	IF	CITATIONS
109	Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350â€year Mount Everest ice core record. Journal of Geophysical Research, 2009, 114, .	3.3	65
110	Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. Cryosphere, 2016, 10, 2611-2621.	3.9	65
111	Diversity and succession of autotrophic microbial community in high-elevation soils along deglaciation chronosequence. FEMS Microbiology Ecology, 2016, 92, fiw160.	2.7	65
112	Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau. Climate Research, 2011, 46, 171-183.	1.1	65
113	Yak dung combustion aerosols in the Tibetan Plateau: Chemical characteristics and influence on the local atmospheric environment. Atmospheric Research, 2015, 156, 58-66.	4.1	64
114	Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environmental Pollution, 2019, 253, 49-60.	7.5	64
115	Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Climate Dynamics, 2011, 36, 1633-1647.	3.8	63
116	Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. International Journal of Climatology, 2014, 34, 1873-1882.	3.5	63
117	Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Scientific Reports, 2017, 7, 40501.	3.3	63
118	Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness. Atmospheric Chemistry and Physics, 2017, 17, 11293-11311.	4.9	63
119	Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmospheric Environment, 2016, 143, 79-85.	4.1	62
120	Chemical characteristics of soluble aerosols over the central Himalayas: insights into spatiotemporal variations and sources. Environmental Science and Pollution Research, 2017, 24, 24454-24472.	5.3	62
121	Glacier variations and climate warming and drying in the central Himalayas. Science Bulletin, 2004, 49, 65-69.	1.7	61
122	Distribution of Persistent Organic Pollutants in Soil and Grasses Around Mt. Qomolangma, China. Archives of Environmental Contamination and Toxicology, 2007, 52, 153-162.	4.1	61
123	Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations. Climate Dynamics, 2013, 40, 2073-2086.	3.8	61
124	Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 2013, 447, 123-132.	8.0	61
125	Mercury in Wild Fish from High-Altitude Aquatic Ecosystems in the Tibetan Plateau. Environmental Science & Technology, 2014, 48, 5220-5228.	10.0	61
126	Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal. Environmental Earth Sciences, 2016, 75, 1.	2.7	61

#	Article	IF	CITATIONS
127	Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmospheric Chemistry and Physics, 2018, 18, 12859-12875.	4.9	61
128	Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography. Arctic, Antarctic, and Alpine Research, 2015, 47, 573-590.	1.1	60
129	Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environmental Pollution, 2019, 254, 112952.	7.5	59
130	Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environmental Geology, 2008, 53, 1433-1440.	1.2	58
131	Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources. Atmospheric Environment, 2019, 207, 205-214.	4.1	58
132	Ionic composition of wet precipitation over the southern slope of central Himalayas, Nepal. Environmental Science and Pollution Research, 2014, 21, 2677-2687.	5.3	57
133	Individual Particle Analysis of Atmospheric Aerosols at Nam Co, Tibetan Plateau. Aerosol and Air Quality Research, 2009, 9, 323-331.	2.1	57
134	Air-Lake Interaction Features Found in Heat and Water Exchanges over Nam Co on the Tibetan Plateau. Scientific Online Letters on the Atmosphere, 2009, 5, 172-175.	1.4	56
135	Stable-isotopic composition of precipitation over the northern slope of the central Himalaya. Journal of Glaciology, 2002, 48, 519-526.	2.2	55
136	Dust records from three ice cores: relationships to spring atmospheric circulation over the Northern Hemisphere. Atmospheric Environment, 2003, 37, 4823-4835.	4.1	55
137	Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest). Journal of Geophysical Research, 2007, 112, .	3.3	55
138	Characteristics and Changes in Air Temperature and Glacier's Response on the North Slope of Mt. Qomolangma (Mt. Everest). Arctic, Antarctic, and Alpine Research, 2011, 43, 147-160.	1.1	55
139	Brown carbon in the cryosphere: Current knowledge and perspective. Advances in Climate Change Research, 2016, 7, 82-89.	5.1	55
140	Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere, 2013, 92, 871-881.	8.2	54
141	Spatiotemporal variability of snow depth across the Eurasian continent fromÂ1966 toÂ2012. Cryosphere, 2018, 12, 227-245.	3.9	54
142	Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Global and Planetary Change, 2020, 192, 103261.	3.5	54
143	A High-Resolution Record of Atmospheric Dust Composition and Variability since a.d. 1650 from a Mount Everest Ice Core. Journal of Climate, 2009, 22, 3910-3925.	3.2	53
144	Early onset of rainy season suppresses glacier melt: a case study on Zhadang glacier, Tibetan Plateau. Journal of Glaciology, 2009, 55, 755-758.	2.2	53

#	Article	IF	CITATIONS
145	Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theoretical and Applied Climatology, 2012, 109, 485-496.	2.8	53
146	Projection of snow cover changes over China under RCP scenarios. Climate Dynamics, 2013, 41, 589-600.	3.8	53
147	Gaseous and particulate pollutants in Lhasa, Tibet during 2013–2017: Spatial variability, temporal variations and implications. Environmental Pollution, 2019, 253, 68-77.	7.5	53
148	Twentieth century increase of atmospheric ammonia recorded in Mount Everest ice core. Journal of Geophysical Research, 2002, 107, ACL 13-1-ACL 13-9.	3.3	52
149	Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet. Hydrology and Earth System Sciences, 2010, 14, 481-489.	4.9	51
150	Winter temperature extremes in China and their possible causes. International Journal of Climatology, 2013, 33, 1444-1455.	3.5	51
151	Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa. Atmospheric Research, 2015, 153, 87-97.	4.1	51
152	Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region: Distribution, sources, and risks to humans and wildlife. Science of the Total Environment, 2016, 556, 12-22.	8.0	51
153	Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 2018, 18, 6441-6460.	4.9	51
154	Long range trans-Pacific transport and deposition of Asian dust aerosols. Journal of Environmental Sciences, 2008, 20, 424-428.	6.1	50
155	Greenhouse gases emissions in rivers of the Tibetan Plateau. Scientific Reports, 2017, 7, 16573.	3.3	50
156	Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution, 2015, 206, 518-526.	7.5	49
157	Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing. Atmospheric Research, 2018, 200, 77-87.	4.1	49
158	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolâ~†. Environmental Pollution, 2021, 268, 115906.	7.5	49
159	Altitude effects of climatic variation on Tibetan Plateau and its vicinities. Journal of Earth Science (Wuhan, China), 2010, 21, 189-198.	3.2	48
160	River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environmental Earth Sciences, 2015, 73, 4151-4163.	2.7	48
161	Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model. Atmospheric Research, 2016, 178-179, 484-496.	4.1	48
162	Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmospheric Environment, 2010, 44, 2980-2989.	4.1	47

#	Article	IF	CITATIONS
163	Physicochemical characteristics and sources of atmospheric dust deposition in snow packs on the glaciers of western Qilian Mountains, China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 20956.	1.6	47
164	Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmospheric Research, 2016, 182, 46-53.	4.1	47
165	Emission Measurements from Traditional Biomass Cookstoves in South Asia and Tibet. Environmental Science & Technology, 2019, 53, 3306-3314.	10.0	47
166	A method for estimating the contribution of evaporative vapor from Nam Co to local atmospheric vapor based on stable isotopes of water bodies. Science Bulletin, 2011, 56, 1511-1517.	1.7	46
167	Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. International Journal of Climatology, 2016, 36, 2633-2643.	3.5	46
168	Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: New insights from Nd‣r isotopic composition and size distribution. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7371-7382.	3.3	46
169	Going to Extremes: Installing the World's Highest Weather Stations on Mount Everest. Bulletin of the American Meteorological Society, 2020, 101, E1870-E1890.	3.3	46
170	A 108.83-m Ice-Core Record of Atmospheric Dust Deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research, 2010, 73, 33-38.	1.7	45
171	Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environmental Earth Sciences, 2014, 71, 4143-4148.	2.7	45
172	Large Variation of Mercury Isotope Composition During a Single Precipitation Event at Lhasa City, Tibetan Plateau, China. Procedia Earth and Planetary Science, 2015, 13, 282-286.	0.6	45
173	Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau. Environmental Pollution, 2020, 257, 113616.	7.5	45
174	Clacier variations in the Naimona'nyi region, western Himalaya, in the last three decades. Annals of Claciology, 2006, 43, 385-389.	1.4	44
175	Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China. Journal of Mountain Science, 2009, 6, 211-220.	2.0	44
176	Response of Zhadang Glacier runoff in Nam Co Basin, Tibet, to changes in air temperature and precipitation form. Science Bulletin, 2010, 55, 2103-2110.	1.7	44
177	Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau. Atmospheric Environment, 2012, 46, 140-146.	4.1	44
178	Projected trends in mean, maximum, and minimum surface temperature in China from simulations. Global and Planetary Change, 2014, 112, 53-63.	3.5	44
179	Atmospheric Aerosol Elements over the Inland Tibetan Plateau: Concentration, Seasonality, and Transport. Aerosol and Air Quality Research, 2016, 16, 789-800.	2.1	44
180	Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Regions Science and Technology, 2016, 126, 36-43.	3.5	44

#	Article	IF	CITATIONS
181	Identification of absorbing aerosol types at a site in the northern edge of Indo-Gangetic Plain and a polluted valley in the foothills of the central Himalayas. Atmospheric Research, 2019, 223, 15-23.	4.1	44
182	Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau. Aquatic Geochemistry, 2008, 14, 321-336.	1.3	43
183	Suppression of precipitation by dust particles originated in the Tibetan Plateau. Atmospheric Environment, 2009, 43, 568-574.	4.1	43
184	Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet. Atmospheric Research, 2010, 96, 553-559.	4.1	43
185	Spatial distribution, sources and risk assessment of potentially toxic trace elements and rare earth elements in soils of the Langtang Himalaya, Nepal. Environmental Earth Sciences, 2016, 75, 1.	2.7	43
186	Water chemistry of the southern Tibetan Plateau: an assessment of the Yarlung Tsangpo river basin. Environmental Earth Sciences, 2017, 76, 1.	2.7	43
187	Mixing State and Fractal Dimension of Soot Particles at a Remote Site in the Southeastern Tibetan Plateau. Environmental Science & Technology, 2019, 53, 8227-8234.	10.0	43
188	Aeolian dust transport, cycle and influences in high-elevation cryosphere of the Tibetan Plateau region: New evidences from alpine snow and ice. Earth-Science Reviews, 2020, 211, 103408.	9.1	43
189	Glacier mass changes in Rongbuk catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data. Journal of Hydrology, 2015, 530, 273-280.	5.4	42
190	Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 427-443.	4.9	42
191	Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co,) Tj ETQq1 I 10557-10574.	1 0.784314 4.9	rgBT /Overlc 42
192	Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Climate Dynamics, 2020, 55, 2405-2419.	3.8	42
193	Carbonaceous matter in the atmosphere and glaciers of the Himalayas and the Tibetan plateau: An investigative review. Environment International, 2021, 146, 106281.	10.0	42
194	Sr-Nd isotope evidence for modern aeolian dust sources in mountain glaciers of western China. Journal of Glaciology, 2012, 58, 859-865.	2.2	41
195	Can temperature extremes in China be calculated from reanalysis?. Global and Planetary Change, 2013, 111, 268-279.	3.5	41
196	Assessment of water quality and health risks for toxic trace elements in urban Phewa and remote Gosainkunda lakes, Nepal. Human and Ecological Risk Assessment (HERA), 2017, 23, 959-973.	3.4	41
197	Deposition and light absorption characteristics of precipitation dissolved organic carbon (DOC) at three remote stations in the Himalayas and Tibetan Plateau, China. Science of the Total Environment, 2017, 605-606, 1039-1046.	8.0	41
198	Lakes on the Tibetan Plateau as Conduits of Greenhouse Gases to the Atmosphere. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2091-2103.	3.0	41

#	Article	IF	CITATIONS
199	Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources. Atmospheric Chemistry and Physics, 2019, 19, 2725-2747.	4.9	41

Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha) Tj ETQq0 0 0 rg BT4Overloako 10 Tf 50

201	Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading. Atmospheric Chemistry and Physics, 2017, 17, 449-463.	4.9	40
202	Culturable bacteria in glacial meltwater at 6,350Âm on the East Rongbuk Glacier, Mount Everest. Extremophiles, 2009, 13, 89-99.	2.3	39
203	Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau. Quaternary International, 2009, 208, 151-157.	1.5	39
204	Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau. Geophysical Research Letters, 2015, 42, 2434-2441.	4.0	39
205	New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications. Environmental Science and Pollution Research, 2015, 22, 2735-2744.	5.3	39
206	Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Science of the Total Environment, 2017, 579, 1240-1248.	8.0	39
207	Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties. Science of the Total Environment, 2019, 647, 1385-1397.	8.0	39
208	Historical Black Carbon Reconstruction from the Lake Sediments of the Himalayan–Tibetan Plateau. Environmental Science & Technology, 2019, 53, 5641-5651.	10.0	39
209	Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Science of the Total Environment, 2019, 655, 1207-1217.	8.0	39
210	Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: The semi-arid mountain valley of the Central Himalaya. Atmospheric Research, 2020, 234, 104691.	4.1	39
211	Changes in sea ice and future accessibility along the Arctic Northeast Passage. Global and Planetary Change, 2020, 195, 103319.	3.5	39
212	Future Population Exposure to Daytime and Nighttime Heat Waves in South Asia. Earth's Future, 2022, 10, .	6.3	39
213	Concentration level and distribution of polycyclic aromatic hydrocarbons in soil and grass around Mt. Qomolangma, China. Science Bulletin, 2007, 52, 1405-1413.	1.7	38
214	Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of the Total Environment, 2017, 607-608, 1237-1249.	8.0	38
215	Revisiting the Relationship between Observed Warming and Surface Pressure in the Tibetan Plateau. Journal of Climate, 2017, 30, 1721-1737.	3.2	38
216	Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition. Atmospheric Chemistry and Physics, 2017, 17, 11899-11912.	4.9	38

#	Article	IF	CITATIONS
217	Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China. Environmental Pollution, 2021, 268, 115907.	7.5	38
218	Transport of semivolatile organic compounds to the Tibetan Plateau: Monthly resolved air concentrations at Nam Co. Journal of Geophysical Research, 2010, 115, .	3.3	37
219	Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3610-3621.	3.3	37
220	Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. Environmental Science and Pollution Research, 2017, 24, 15369-15378.	5.3	37
221	Aerosol Properties Over Tibetan Plateau From a Decade of AERONET Measurements: Baseline, Types, and Influencing Factors. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13357-13374.	3.3	37
222	Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. Science of the Total Environment, 2020, 740, 140056.	8.0	37
223	Water chemistry of the headwaters of the Yangtze River. Environmental Earth Sciences, 2015, 74, 6443-6458.	2.7	36
224	Water-Soluble Ionic Composition of Aerosols at Urban Location in the Foothills of Himalaya, Pokhara Valley, Nepal. Atmosphere, 2016, 7, 102.	2.3	36
225	Water isotopes and hydrograph separation in different glacial catchments in the southeast margin of the <scp>Tibetan Plateau</scp> . Hydrological Processes, 2017, 31, 3810-3826.	2.6	36
226	Importance of Mountain Glaciers as a Source of Dissolved Organic Carbon. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2123-2134.	2.8	36
227	Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmospheric Chemistry and Physics, 2019, 19, 14637-14656.	4.9	36
228	Total suspended particulate matter and toxic elements indoors during cooking with yak dung. Atmospheric Environment, 2009, 43, 4243-4246.	4.1	35
229	Heavy metals in sediments of the Yarlung Tsangbo and its connection with the arsenic problem in the Ganges–Brahmaputra Basin. Environmental Geochemistry and Health, 2011, 33, 23-32.	3.4	35
230	Wet deposition of precipitation chemistry during 2005–2009 at a remote site (Nam Co Station) in central Tibetan Plateau. Journal of Atmospheric Chemistry, 2012, 69, 187-200.	3.2	35
231	Personal PM2.5 and indoor CO in nomadic tents using open and chimney biomass stoves on the Tibetan Plateau. Atmospheric Environment, 2012, 59, 207-213.	4.1	35
232	Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 2014, 96, 27-36.	4.1	35
233	Historical Records of Mercury Stable Isotopes in Sediments of Tibetan Lakes. Scientific Reports, 2016, 6, 23332.	3.3	35
234	Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau. Atmospheric Research, 2017, 197, 474-484.	4.1	35

#	Article	IF	CITATIONS
235	Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 2020, 708, 135127.	8.0	35
236	Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study. Environmental Pollution, 2020, 261, 114239.	7.5	35
237	Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern Pakistan. Polish Journal of Environmental Studies, 2017, 26, 525-542.	1.2	35
238	Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate. Organic Geochemistry, 2000, 31, 15-23.	1.8	34
239	Dust storm activity over the Tibetan Plateau recorded by a shallow ice core from the north slope of Mt. Qomolangma (Everest), Tibetâ€Himal region. Geophysical Research Letters, 2007, 34, .	4.0	34
240	Bacteria variabilities in a Tibetan ice core and their relations with climate change. Global Biogeochemical Cycles, 2008, 22, .	4.9	34
241	Rare earth elements in an ice core from Mt. Everest: Seasonal variations and potential sources. Atmospheric Research, 2009, 94, 300-312.	4.1	34
242	Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Science of the Total Environment, 2012, 429, 223-230.	8.0	34
243	Atmospheric particulate mercury in Lhasa city, Tibetan Plateau. Atmospheric Environment, 2016, 142, 433-441.	4.1	34
244	Bacterial responses to environmental change on the <scp>T</scp> ibetan <scp>P</scp> lateau over the past half century. Environmental Microbiology, 2016, 18, 1930-1941.	3.8	34
245	Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China. Journal of Environmental Sciences, 2016, 44, 213-223.	6.1	34
246	In-situ measurements of light-absorbing impurities in snow of glacier on Mt. Yulong and implications for radiative forcing estimates. Science of the Total Environment, 2017, 581-582, 848-856.	8.0	34
247	The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environmental Pollution, 2017, 220, 936-945.	7.5	34
248	Biogeography of cryoconite bacterial communities on glaciers of the Tibetan Plateau. FEMS Microbiology Ecology, 2017, 93, .	2.7	34
249	Fossil Fuel Combustion Emission From South Asia Influences Precipitation Dissolved Organic Carbon Reaching the Remote Tibetan Plateau: Isotopic and Molecular Evidence. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6248-6258.	3.3	34
250	Solar forcing of the polar atmosphere. Annals of Glaciology, 2005, 41, 147-154.	1.4	33
251	First results on bathymetry and limnology of high-altitude lakes in the Gokyo Valley, Sagarmatha (Everest) National Park, Nepal. Limnology, 2012, 13, 181-192.	1.5	33
252	Comparison of NCEP/NCAR and ERA-40 total cloud cover with surface observations over the Tibetan Plateau. International Journal of Climatology, 2014, 34, 2529-2537.	3.5	33

#	Article	IF	CITATIONS
253	Present and projected degree days in China from observation, reanalysis and simulations. Climate Dynamics, 2014, 43, 1449-1462.	3.8	33
254	Mercury and Selected Trace Elements from a Remote (Gosainkunda) and an Urban (Phewa) Lake Waters of Nepal. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	33
255	Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmospheric Research, 2016, 174-175, 142-150.	4.1	33
256	Composition and sources of polycyclic aromatic hydrocarbons in cryoconites of the Tibetan Plateau glaciers. Science of the Total Environment, 2017, 574, 991-999.	8.0	33
257	Bacterial Community of the Largest Oligosaline Lake, Namco on the Tibetan Plateau. Geomicrobiology Journal, 2010, 27, 669-682.	2.0	32
258	Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China. Environmental Science and Pollution Research, 2012, 19, 1620-1628.	5.3	32
259	Resolving the impact of stratosphereâ€ŧoâ€ŧroposphere transport on the sulfur cycle and surface ozone over the Tibetan Plateau using a cosmogenic ³⁵ S tracer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 439-456.	3.3	32
260	Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. Environmental Pollution, 2019, 247, 216-228.	7.5	32
261	Black carbon concentration in the central Himalayas: Impact on glacier melt and potential source contribution. Environmental Pollution, 2021, 275, 116544.	7.5	32
262	Temperature and methane records over the last 2 ka in Dasuopu ice core. Science in China Series D: Earth Sciences, 2002, 45, 1068-1074.	0.9	31
263	Atmospheric soluble dust records from a Tibetan ice core: Possible climate proxies and teleconnection with the Pacific Decadal Oscillation. Journal of Geophysical Research, 2009, 114, .	3.3	31
264	Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Science Bulletin, 2010, 55, 2697-2703.	1.7	31
265	Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau. Atmospheric Environment, 2016, 141, 203-208.	4.1	31
266	Spatial variation of air quality index and urban driving factors linkages: evidence from Chinese cities. Environmental Science and Pollution Research, 2017, 24, 4457-4468.	5.3	31
267	Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo. Atmospheric Chemistry and Physics, 2018, 18, 4981-5000.	4.9	31
268	Observation of optical properties and sources of aerosols at Buddha's birthplace, Lumbini, Nepal: environmental implications. Environmental Science and Pollution Research, 2018, 25, 14868-14881.	5.3	31
269	Air Pollution in the Hindu Kush Himalaya. , 2019, , 339-387.		31
270	Seasonal features of aerosol particles recorded in snow from Mt. Qomolangma (Everest) and their environmental implications. Journal of Environmental Sciences, 2009, 21, 914-919.	6.1	30

#	Article	IF	CITATIONS
271	Changes in precipitating snow chemistry with seasonality in the remote Laohugou glacier basin, western Qilian Mountains. Environmental Science and Pollution Research, 2017, 24, 11404-11414.	5.3	30
272	Black carbon in a glacier and snow cover on the northeastern Tibetan Plateau: Concentrations, radiative forcing and potential source from local topsoil. Science of the Total Environment, 2019, 686, 1030-1038.	8.0	30
273	Elemental composition of aerosols collected in the glacier area on Nyainqêntanglha Range, Tibetan Plateau, during summer monsoon season. Science Bulletin, 2007, 52, 3436-3442.	1.7	29
274	A 500year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau. Atmospheric Research, 2015, 166, 1-9.	4.1	29
275	Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS ONE, 2017, 12, e0178166.	2.5	29
276	Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 4617-4638.	4.9	29
277	Deposition of Organic and Black Carbon: Direct Measurements at Three Remote Stations in the Himalayas and Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9702-9715.	3.3	29
278	Linking the conventional and emerging detection techniques for ambient bioaerosols: a review. Reviews in Environmental Science and Biotechnology, 2019, 18, 495-523.	8.1	29
279	Evidence for Large Amounts of Brown Carbonaceous Tarballs in the Himalayan Atmosphere. Environmental Science and Technology Letters, 2021, 8, 16-23.	8.7	29
280	Climate Change and Water Use Partitioning by Different Plant Functional Groups in a Grassland on the Tibetan Plateau. PLoS ONE, 2013, 8, e75503.	2.5	29
281	Chemical composition of fresh snow on Xixabangma peak, central Himalaya, during the summer monsoon season. Journal of Glaciology, 2002, 48, 337-339.	2.2	28
282	Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest. Science Bulletin, 2006, 51, 1476-1486.	9.0	28
283	Annual Accumulation in the Mt. Nyainqentanglha Ice Core, Southern Tibetan Plateau, China: Relationships To Atmospheric Circulation over Asia. Arctic, Antarctic, and Alpine Research, 2007, 39, 663-670.	1.1	28
284	Physicochemical impacts of dust particles on alpine glacier meltwater at the Laohugou Glacier basin in western Qilian Mountains, China. Science of the Total Environment, 2014, 493, 930-942.	8.0	28
285	First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight. Atmospheric Environment, 2016, 134, 27-39.	4.1	28
286	Concentration, sources, and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau. Environmental Science and Pollution Research, 2016, 23, 12915-12921.	5.3	28
287	Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core. Atmospheric Environment, 2016, 131, 17-28.	4.1	28
288	Composition and mixing states of brown haze particle over the Himalayas along two transboundary south-north transects. Atmospheric Environment, 2017, 156, 24-35.	4.1	28

#	Article	IF	CITATIONS
289	Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau. Environmental Science and Pollution Research, 2017, 24, 21386-21397.	5.3	28
290	Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 2016, 541, 1104-1118.	5.4	27
291	Water-soluble elements in snow and ice on Mt. Yulong. Science of the Total Environment, 2017, 574, 889-900.	8.0	27
292	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m) Tj ETQq0 0 0 n 12247-12256.	rgBT /Over 10.0	rlock 10 Tf 50 27
293	New insights into heavy metal elements deposition in the snowpacks of mountain glaciers in the eastern Tibetan Plateau. Ecotoxicology and Environmental Safety, 2021, 207, 111228.	6.0	27
294	Summer temperature trend over the past two millennia using air content in Himalayan ice. Climate of the Past, 2007, 3, 89-95.	3.4	26
295	Does a weekend effect in diurnal temperature range exist in the eastern and central Tibetan Plateau?. Environmental Research Letters, 2009, 4, 045202.	5.2	26
296	Lead isotopic composition of insoluble particles from widespread mountain glaciers in western China: Natural vs. anthropogenic sources. Atmospheric Environment, 2013, 75, 224-232.	4.1	26
297	Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: Insights into chemical composition and sources. Atmospheric Environment, 2016, 138, 114-124.	4.1	26
298	Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau. Environmental Pollution, 2017, 227, 243-251.	7.5	26
299	Variability in individual particle structure and mixing states between the glacier–snowpack and atmosphere in the northeastern Tibetan Plateau. Cryosphere, 2018, 12, 3877-3890.	3.9	26
300	Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the Northern Tibetan Plateau. Science of the Total Environment, 2019, 686, 370-381.	8.0	26
301	Characterization of mercury concentration from soils to needle and tree rings of Schrenk spruce (Picea schrenkiana) of the middle Tianshan Mountains, northwestern China. Ecological Indicators, 2019, 104, 24-31.	6.3	26
302	Investigating air pollutant concentrations, impact factors, and emission control strategies in western China by using a regional climate-chemistry model. Chemosphere, 2020, 246, 125767.	8.2	26
303	Temporal and Spatial Aspects of Snow Distribution in the Nam Co Basin on the Tibetan Plateau from MODIS Data. Remote Sensing, 2010, 2, 2700-2712.	4.0	25
304	Storage of dissolved organic carbon in Chinese glaciers. Journal of Glaciology, 2016, 62, 402-406.	2.2	25
305	Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain. Climate Dynamics, 2017, 48, 2901-2917.	3.8	25
306	Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 1115-1128.	4.9	25

#	Article	IF	CITATIONS
307	Sensitivity Analysis of Chemical Mechanisms in the WRF-Chem Model in Reconstructing Aerosol Concentrations and Optical Properties in the Tibetan Plateau. Aerosol and Air Quality Research, 2018, 18, 505-521.	2.1	25
308	Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication. Atmospheric Chemistry and Physics, 2020, 20, 5923-5943.	4.9	25
309	Organochlorine pesticides in fresh-fallen snow on East Rongbuk Glacier of Mt. Qomolangma (Everest). Science in China Series D: Earth Sciences, 2007, 50, 1097-1102.	0.9	24
310	Simulation and analysis of glacier runoff and mass balance in the Nam Co basin, southern Tibetan Plateau. Journal of Glaciology, 2015, 61, 447-460.	2.2	24
311	Variations of the Physicochemical Parameters and Metal Levels and Their Risk Assessment in Urbanized Bagmati River, Kathmandu, Nepal. Journal of Chemistry, 2016, 2016, 1-13.	1.9	24
312	Melting glaciers: Hidden hazards. Science, 2017, 356, 495-495.	12.6	24
313	Atmospheric deposition and contamination of trace elements in snowpacks of mountain glaciers in the northeastern Tibetan Plateau. Science of the Total Environment, 2019, 689, 754-764.	8.0	24
314	Assessments of the Arctic amplification and the changes in the Arctic sea surface. Advances in Climate Change Research, 2019, 10, 193-202.	5.1	24
315	Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. Environmental Pollution, 2020, 257, 113541.	7.5	24
316	Accelerating permafrost collapse on the eastern Tibetan Plateau. Environmental Research Letters, 2021, 16, 054023.	5.2	24
317	Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra. Cryosphere, 2020, 14, 2267-2281.	3.9	24
318	An ice-core proxy for Antarctic circumpolar zonal wind intensity. Annals of Glaciology, 2005, 41, 121-130.	1.4	23
319	Seasonal and spatial variability in snow chemistry at Eclipse Icefield, Yukon, Canada. Annals of Glaciology, 2006, 43, 230-238.	1.4	23
320	Microbial community structure in major habitats above 6000 m on Mount Everest. Science Bulletin, 2007, 52, 2350-2357.	1.7	23
321	A test of J2000 model in a glacierized catchment in the central Tibetan Plateau. Environmental Earth Sciences, 2012, 65, 1651-1659.	2.7	23
322	Dissolved organic carbon fractionation accelerates glacier-melting: A case study in the northern Tibetan Plateau. Science of the Total Environment, 2018, 627, 579-585.	8.0	23
323	First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve, Tibetan Plateau, and evidence oftransboundary pollutant invasion. Atmospheric Chemistry and Physics, 2019, 19, 1373-1391.	4.9	23
324	Accumulation of Atmospheric Mercury in Glacier Cryoconite over Western China. Environmental Science & 2019, 199, 2019, 53, 6632-6639.	10.0	23

#	Article	IF	CITATIONS
325	Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau. Environmental Pollution, 2020, 256, 113432.	7.5	23
326	Potential Effect of Black Carbon on Glacier Mass Balance during the Past 55 Years of Laohugou Glacier No. 12, Western Qilian Mountains. Journal of Earth Science (Wuhan, China), 2020, 31, 410-418.	3.2	23
327	Seasonal Variation of Mercury and Its Isotopes in Atmospheric Particles at the Coastal Zhongshan Station, Eastern Antarctica. Environmental Science & Technology, 2020, 54, 11344-11355.	10.0	23
328	Sources and spatio-temporal distribution of aerosol polycyclic aromatic hydrocarbons throughout the Tibetan Plateau. Environmental Pollution, 2020, 261, 114144.	7.5	23
329	Major ions and irrigation water quality assessment of the Nepalese Himalayan rivers. Environment, Development and Sustainability, 2021, 23, 2668-2680.	5.0	23
330	Characteristics of Particulate-Phase Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere over the Central Himalayas. Aerosol and Air Quality Research, 2017, 17, 2942-2954.	2.1	23
331	Transport of short-lived climate forcers/pollutants (SLCF/P) to the Himalayas during the South Asian summer monsoon onset. Environmental Research Letters, 2014, 9, 084005.	5.2	22
332	Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Science of the Total Environment, 2017, 599-600, 2046-2053.	8.0	22
333	Importance of Local Black Carbon Emissions to the Fate of Glaciers of the Third Pole. Environmental Science & Technology, 2018, 52, 14027-14028.	10.0	22
334	Hfâ€Ndâ€5r Isotopic Composition as Fingerprint for Longâ€Range Transported Eolian Dust Deposition in Glacier Snowpack of Eastern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7013-7023.	3.3	22
335	Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in northwest China. Environmental Pollution, 2019, 246, 79-88.	7.5	22
336	Source Apportionment and Risk Assessment of Atmospheric Polycyclic Aromatic Hydrocarbons in Lhasa, Tibet, China. Aerosol and Air Quality Research, 2018, 18, 1294-1304.	2.1	22
337	Reliability of NCEP/NCAR reanalysis data in the Himalayas/Tibetan Plateau. Journal of Chinese Geography, 2007, 17, 421-430.	3.9	21
338	Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet. Science of the Total Environment, 2016, 566-567, 1215-1222.	8.0	21
339	Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau. Journal of Environmental Sciences, 2017, 52, 18-28.	6.1	21
340	Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 7897-7911.	4.9	21
341	Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth?. Science of the Total Environment, 2020, 735, 139275.	8.0	21
342	Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia. Science of the Total Environment, 2020, 725, 138346.	8.0	21

#	Article	IF	CITATIONS
343	Hf–Nd–Sr Isotopic Composition of the Tibetan Plateau Dust as a Fingerprint for Regional to Hemispherical Transport. Environmental Science & Technology, 2021, 55, 10121-10132.	10.0	21
344	Columnar aerosol properties and radiative effects over Dushanbe, Tajikistan in Central Asia. Environmental Pollution, 2020, 265, 114872.	7.5	21
345	Spatial and Temporal Variations of Gaseous and Particulate Pollutants in Six Sites in Tibet, China, during 2016–2017. Aerosol and Air Quality Research, 2019, 19, 516-527.	2.1	21
346	Characteristics of spatial and temporal variations of monthly mean surface air temperature over Qinghai-Tibet Plateau. Chinese Geographical Science, 2006, 16, 351-358.	3.0	20
347	Seasonal Dynamics of the Bacterial Community in Lake Namco, the Largest Tibetan Lake. Geomicrobiology Journal, 2013, 30, 17-28.	2.0	20
348	Low-molecular-weight organic acids in the Tibetan Plateau: Results from one-year of precipitation samples at the SET station. Atmospheric Environment, 2014, 86, 68-73.	4.1	20
349	Vanishing High Mountain Glacial Archives: Challenges and Perspectives. Environmental Science & Technology, 2015, 49, 9499-9500.	10.0	20
350	Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environmental Science and Pollution Research, 2015, 22, 12490-12500.	5.3	20
351	Distribution and variation of mercury in frozen soils of a high-altitude permafrost region on the northeastern margin of the Tibetan Plateau. Environmental Science and Pollution Research, 2017, 24, 15078-15088.	5.3	20
352	Export of dissolved carbonaceous and nitrogenous substances in rivers of the "Water Tower of Asia― Journal of Environmental Sciences, 2018, 65, 53-61.	6.1	20
353	Levels and spatial distributions of levoglucosan and dissolved organic carbon in snowpits over the Tibetan Plateau glaciers. Science of the Total Environment, 2018, 612, 1340-1347.	8.0	20
354	Atmospheric sulfur isotopic anomalies recorded at Mt. Everest across the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6964-6969.	7.1	20
355	Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climate-chemistry model. Environmental Pollution, 2020, 257, 113127.	7.5	20
356	Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan. Journal of Environmental Sciences, 2020, 90, 286-296.	6.1	20
357	The vertical profiles of carbonaceous aerosols and key influencing factors during wintertime over western Sichuan Basin, China. Atmospheric Environment, 2020, 223, 117269.	4.1	20
358	Spatiotemporal variability of snow cover timing and duration over the Eurasian continent during 1966–2012. Science of the Total Environment, 2021, 750, 141670.	8.0	20
359	Globally elevated chemical weathering rates beneath glaciers. Nature Communications, 2022, 13, 407.	12.8	20
360	Hydrothermal pattern of frozen soil in Nam Co lake basin, the Tibetan Plateau. Environmental Geology, 2009, 57, 1775-1784.	1.2	19

#	Article	IF	CITATIONS
361	Modeling hydrological process in a glacier basin on the central Tibetan Plateau with a distributed hydrology soil vegetation model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9521-9539.	3.3	19
362	Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau. Chemosphere, 2017, 171, 386-398.	8.2	19
363	Response of snow hydrological processes to a changing climate during 1961 to 2016 in the headwater of Irtysh River Basin, Chinese Altai Mountains. Journal of Mountain Science, 2017, 14, 2295-2310.	2.0	19
364	Dissolved organic carbon in summer precipitation and its wet deposition flux in the Mt. Yulong region, southeastern Tibetan Plateau. Journal of Atmospheric Chemistry, 2019, 76, 1-20.	3.2	19
365	Climate and hydrological changes in the Ob River Basin during 1936–2017. Hydrological Processes, 2020, 34, 1821-1836.	2.6	19
366	Decoupling Natural and Anthropogenic Mercury and Lead Transport from South Asia to the Himalayas. Environmental Science & amp; Technology, 2020, 54, 5429-5436.	10.0	19
367	Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau. Environmental Pollution, 2021, 272, 116000.	7.5	19
368	Mt. Everest's highest glacier is a sentinel for accelerating ice loss. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	19
369	Climatic significance of \hat{l}' 180 records from an 80.36 m ice core in the East Rongbuk Glacier, Mount Qomolangma (Everest). Science in China Series D: Earth Sciences, 2005, 48, 266-272.	0.9	18
370	Geochemical evidence on the source regions of Tibetan Plateau dusts during non-monsoon period in 2008/09. Atmospheric Environment, 2012, 59, 382-388.	4.1	18
371	Geochemical evidence for sources of surface dust deposited on the Laohugou glacier, Qilian Mountains. Applied Geochemistry, 2017, 79, 1-8.	3.0	18
372	Effects of clouds on surface melting of Laohugou glacier No. 12, western Qilian Mountains, China. Journal of Glaciology, 2018, 64, 89-99.	2.2	18
373	Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications. Cryosphere, 2018, 12, 3177-3186.	3.9	18
374	A chironomid-based record of temperature variability during the past 4000 years in northern China and its possible societal implications. Climate of the Past, 2018, 14, 383-396.	3.4	18
375	Understanding changes in the water budget driven by climate change in cryosphericâ€dominated watershed of the northeast Tibetan Plateau, China. Hydrological Processes, 2019, 33, 1040-1058.	2.6	18
376	Critical contribution of south Asian residential emissions to atmospheric black carbon over the Tibetan plateau. Science of the Total Environment, 2020, 709, 135923.	8.0	18
377	Projected Changes in Snow Water Equivalent over the Tibetan Plateau under Global Warming of 1.5° and 2°C. Journal of Climate, 2020, 33, 5141-5154.	3.2	18
378	Vegetation Mediated Mercury Flux and Atmospheric Mercury in the Alpine Permafrost Region of the Central Tibetan Plateau. Environmental Science & Technology, 2020, 54, 6043-6052.	10.0	18

#	Article	IF	CITATIONS
379	Mercury biogeochemistry over the Tibetan Plateau: An overview. Critical Reviews in Environmental Science and Technology, 2021, 51, 577-602.	12.8	18
380	Water-soluble organic and inorganic nitrogen in ambient aerosols over the Himalayan middle hills: Seasonality, sources, and transport pathways. Atmospheric Research, 2021, 250, 105376.	4.1	18
381	Snow cover controls seasonally frozen ground regime on the southern edge of Altai Mountains. Agricultural and Forest Meteorology, 2021, 297, 108271.	4.8	18
382	Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact. Environmental Pollution, 2021, 270, 116195.	7.5	18
383	Perspectives on future sea ice and navigability in the Arctic. Cryosphere, 2021, 15, 5473-5482.	3.9	18
384	Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest). Science Bulletin, 2008, 53, 289-294.	1.7	17
385	Variation of culturable bacteria along depth in the East Rongbuk ice core, Mt. Everest. Geoscience Frontiers, 2012, 3, 327-334.	8.4	17
386	Statistical extraction of volcanic sulphate from nonpolar ice cores. Journal of Geophysical Research, 2012, 117, .	3.3	17
387	Spatial and temporal variations of total mercury in Antarctic snow along the transect from Zhongshan Station to Dome A. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 25152.	1.6	17
388	Tibetan Plateau Geladaindong black carbon ice core record (1843–1982): Recent increases due to higher emissions and lower snow accumulation. Advances in Climate Change Research, 2016, 7, 132-138.	5.1	17
389	Identification of sources of polycyclic aromatic hydrocarbons based on concentrations in soils from two sides of the Himalayas between China and Nepal. Environmental Pollution, 2016, 212, 424-432.	7.5	17
390	Potentially Toxic Trace Metals in Water and Lake-Bed Sediment of Panchpokhari, an Alpine Lake Series in the Central Himalayan Region of Nepal. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	17
391	Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No.1 in central Asia. Hydrological Processes, 2019, 33, 3258-3281.	2.6	17
392	Water balance change and its implications to vegetation in the Tarim River Basin, Central Asia. Quaternary International, 2019, 523, 25-36.	1.5	17
393	Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau. Journal of Chinese Geography, 2006, 16, 337-345.	3.9	16
394	Downward-Shifting Temperature Range for the Growth of Snow-Bacteria on Glaciers of the Tibetan Plateau. Geomicrobiology Journal, 2014, 31, 779-787.	2.0	16
395	A new isolation method for biomass-burning tracers in snow: Measurements of p -hydroxybenzoic, vanillic, and dehydroabietic acids. Atmospheric Environment, 2015, 122, 142-147.	4.1	16
396	Recent Decline of Atmospheric Mercury Recorded by <i>Androsace tapete</i> on the Tibetan Plateau. Environmental Science & Technology, 2016, 50, 13224-13231.	10.0	16

#	Article	IF	CITATIONS
397	Chemical compositions of snow from Mt. Yulong, southeastern Tibetan Plateau. Journal of Earth System Science, 2016, 125, 403-416.	1.3	16
398	Vital contribution of residential emissions to atmospheric fine particles (PM2.5) during the severe wintertime pollution episodes in Western China. Environmental Pollution, 2019, 245, 519-530.	7.5	16
399	Concentration and risk assessments of mercury along the elevation gradient in soils of Langtang Himalayas, Nepal. Human and Ecological Risk Assessment (HERA), 2019, 25, 1006-1017.	3.4	16
400	Regional Differences of Chemical Composition and Optical Properties of Aerosols in the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031226.	3.3	16
401	A new method for extraction of methanol-soluble brown carbon: Implications for investigation of its light absorption ability. Environmental Pollution, 2020, 262, 114300.	7.5	16
402	Soil thermal regime alteration under experimental warming in permafrost regions of the central Tibetan Plateau. Geoderma, 2020, 372, 114397.	5.1	16
403	Assessment of elemental distribution and trace element contamination in surficial wetland sediments, Southern Tibetan Plateau. Environmental Monitoring and Assessment, 2011, 177, 301-313.	2.7	15
404	Diurnal temperature range in CMIP5 models and observations on the Tibetan Plateau. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1978-1989.	2.7	15
405	Using Landsat images to monitor changes in the snow-covered area of selected glaciers in northern Pakistan. Journal of Mountain Science, 2017, 14, 2013-2027.	2.0	15
406	Light-absorbing impurities in snow cover across Northern Xinjiang, China. Journal of Glaciology, 2019, 65, 940-956.	2.2	15
407	Cryoconite on a glacier on the north-eastern Tibetan plateau: light-absorbing impurities, albedo and enhanced melting. Journal of Glaciology, 2019, 65, 633-644.	2.2	15
408	Biomass burning source identification through molecular markers in cryoconites over the Tibetan Plateau. Environmental Pollution, 2019, 244, 209-217.	7.5	15
409	Heavy near-surface PM2.5 pollution in Lhasa, China during a relatively static winter period. Chemosphere, 2019, 214, 314-318.	8.2	15
410	Observing and Modeling the Isotopic Evolution of Snow Meltwater on the Southeastern Tibetan Plateau. Water Resources Research, 2020, 56, e2019WR026423.	4.2	15
411	Severe air pollution and characteristics of light-absorbing particles in a typical rural area of the Indo-Gangetic Plain. Environmental Science and Pollution Research, 2020, 27, 10617-10628.	5.3	15
412	Relative contribution of mineral dust versus black carbon to Third Pole glacier melting. Atmospheric Environment, 2020, 223, 117288.	4.1	15
413	Desert dust as a significant carrier of atmospheric mercury. Environmental Pollution, 2020, 267, 115442.	7.5	15
414	Comparison of two ice-core chemical records recovered from the Qomolangma (Mount Everest) region, Himalaya. Annals of Glaciology, 2002, 35, 266-272.	1.4	14

#	Article	IF	CITATIONS
415	On the unusual holocene carbonate sediment in lake Nam Co, central Tibet. Journal of Mountain Science, 2009, 6, 346-353.	2.0	14
416	Influence of microtopography on active layer thaw depths in Qilian Mountain, northeastern Tibetan Plateau. Environmental Earth Sciences, 2016, 75, 1.	2.7	14
417	Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. Journal of Environmental Sciences, 2018, 68, 130-142.	6.1	14
418	Insight Into Radioâ€Isotope ¹²⁹ I Deposition in Fresh Snow at a Remote Glacier Basin of Northeast Tibetan Plateau, China. Geophysical Research Letters, 2018, 45, 6726-6733.	4.0	14
419	Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model. Water (Switzerland), 2019, 11, 1383.	2.7	14
420	Evaluation of SWAT Model performance on glaciated and non-glaciated subbasins of Nam Co Lake, Southern Tibetan Plateau, China. Journal of Mountain Science, 2019, 16, 1075-1097.	2.0	14
421	Hf-Nd-Sr isotopic fingerprinting for aeolian dust deposited on glaciers in the northeastern Tibetan Plateau region. Global and Planetary Change, 2019, 177, 69-80.	3.5	14
422	Latest observations of total gaseous mercury in a megacity (Lanzhou) in northwest China. Science of the Total Environment, 2020, 720, 137494.	8.0	14
423	Bacterial Diversity and Communities Structural Dynamics in Soil and Meltwater Runoff at the Frontier of Baishui Glacier No.1, China. Microbial Ecology, 2021, 81, 370-384.	2.8	14
424	The transboundary transport of air pollutants and their environmental impacts on Tibetan Plateau. Chinese Science Bulletin, 2019, 64, 2876-2884.	0.7	14
425	The Risk of Mercury Exposure to the People Consuming Fish from Lake Phewa, Nepal. International Journal of Environmental Research and Public Health, 2014, 11, 6771-6779.	2.6	13
426	Modeling Glacier Mass Balance and Runoff in the Koxkar River Basin on the South Slope of the Tianshan Mountains, China, from 1959 to 2009. Water (Switzerland), 2017, 9, 100.	2.7	13
427	Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau. Science of the Total Environment, 2018, 631-632, 270-278.	8.0	13
428	Impacts of climate change on the discharge and glacier mass balance of the different glacierized watersheds in the Tianshan Mountains, Central Asia. Hydrological Processes, 2018, 32, 126-145.	2.6	13
429	Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories. Annals of Glaciology, 2018, 59, 31-40.	1.4	13
430	Dissolved Iron Supply from Asian Glaciers: Local Controls and a Regional Perspective. Global Biogeochemical Cycles, 2019, 33, 1223-1237.	4.9	13
431	Emissions from Solid Fuel Cook Stoves in the HimalayaRegion. Energies, 2019, 12, 1089.	3.1	13
432	Characteristics of carbonaceous aerosols analyzed using a multiwavelength thermal/optical carbon analyzer: A case study in Lanzhou City. Science China Earth Sciences, 2019, 62, 389-402.	5.2	13

#	Article	IF	CITATIONS
433	Quantifying the contributions of various emission sources to black carbon and assessment of control strategies in western China. Atmospheric Research, 2019, 215, 178-192.	4.1	13
434	Black carbon in surface soil of the Himalayas and Tibetan Plateau and its contribution to total black carbon deposition at glacial region. Environmental Science and Pollution Research, 2020, 27, 2670-2676.	5.3	13
435	Microbial mercury methylation profile in terminus of a high-elevation glacier on the northern boundary of the Tibetan Plateau. Science of the Total Environment, 2020, 708, 135226.	8.0	13
436	Dissolved organic carbon in Alaskan Arctic snow: concentrations, light-absorption properties, and bioavailability. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1778968.	1.6	13
437	Black carbon and mineral dust on two glaciers on the central Tibetan Plateau: sources and implications. Journal of Claciology, 2020, 66, 248-258.	2.2	13
438	Research progress of light-absorbing impurities in glaciers of the Tibetan Plateau and its surroundings. Chinese Science Bulletin, 2017, 62, 4151-4162.	0.7	13
439	Mercury Concentrations in Commercial Fish Species of Lake Phewa, Nepal. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 272-277.	2.7	12
440	Age-dependent impacts of climate change and intrinsic water-use efficiency on the growth of Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains, China. Forest Ecology and Management, 2018, 414, 1-14.	3.2	12
441	Increased mercury pollution revealed by tree rings from the China's Tianshan Mountains. Science Bulletin, 2018, 63, 1328-1331.	9.0	12
442	Cultureâ€dependent diversity of bacteria from Laohugou glacier, Qilian Mts., China and their resistance against metals. Journal of Basic Microbiology, 2019, 59, 1065-1081.	3.3	12
443	A hybrid method for PM2.5 source apportionment through WRF-Chem simulations and an assessment of emission-reduction measures in western China. Atmospheric Research, 2020, 236, 104787.	4.1	12
444	Investigation of the spatio-temporal heterogeneity and optical property of water-soluble organic carbon in atmospheric aerosol and snow over the Yulong Snow Mountain, southeastern Tibetan Plateau. Environment International, 2020, 144, 106045.	10.0	12
445	Mercury variation and export in trans-Himalayan rivers: Insights from field observations in the Koshi River. Science of the Total Environment, 2020, 738, 139836.	8.0	12
446	Two heavy haze events over Lumbini in southern Nepal: Enhanced aerosol radiative forcing and heating rates. Atmospheric Environment, 2020, 236, 117658.	4.1	12
447	Black carbon and mercury in the surface sediments of Selin Co, central Tibetan Plateau: Covariation with total carbon. Science of the Total Environment, 2020, 721, 137752.	8.0	12
448	Concentration, sources and wet deposition of dissolved nitrogen and organic carbon in the Northern Indo-Gangetic Plain during monsoon. Journal of Environmental Sciences, 2021, 102, 37-52.	6.1	12
449	Variation of sea ice and perspectives of the Northwest Passage in the Arctic Ocean. Advances in Climate Change Research, 2021, 12, 447-455.	5.1	12
450	Changes in Atmospheric Circulation over the South-Eastern Tibetan Plateau over the last Two Centuries from a Himalayan Ice Core. PAGES News, 2001, 9, 14-16.	0.3	12

#	Article	IF	CITATIONS
451	Study on Mercury in PM10 at an Urban Site in the Central Indo-Gangetic Plain: Seasonal Variability and Influencing Factors. Aerosol and Air Quality Research, 2020, 20, 2729-2740.	2.1	12
452	Endolithic microbes of rocks, their community, function and survival strategies. International Biodeterioration and Biodegradation, 2022, 169, 105387.	3.9	12
453	Clacier variations and climate warming and drying in the central Himalayas. Science Bulletin, 2004, 49, 65.	1.7	11
454	Arbuscular mycorrhizal and dark septate endophytic fungi at 5,500Âm on a glacier forefront in the Qinghai-Tibet Plateau, China. Symbiosis, 2013, 60, 101-105.	2.3	11
455	Cosmogenic ³⁵ S measurements in the Tibetan Plateau to quantify glacier snowmelt. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4125-4135.	3.3	11
456	Chemical Records in Snowpits from High Altitude Glaciers in the Tibetan Plateau and Its Surroundings. PLoS ONE, 2016, 11, e0155232.	2.5	11
457	A twentieth century major soluble ion record of dust and anthropogenic pollutants from Inilchek Glacier, Tien Shan. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1884-1900.	3.3	11
458	Simple Method for High-Sensitivity Determination of Cosmogenic ³⁵ S in Snow and Water Samples Collected from Remote Regions. Analytical Chemistry, 2017, 89, 4116-4123.	6.5	11
459	Vertical distribution of the Asian tropopause aerosols detected by CALIPSO. Environmental Pollution, 2019, 253, 207-220.	7.5	11
460	Carbonaceous matter in glacier at the headwaters of the Yangtze River: Concentration, sources and fractionation during the melting process. Journal of Environmental Sciences, 2020, 87, 389-397.	6.1	11
461	Investigation of variations, causes and component distributions of PM2.5 mass in China using a coupled regional climate-chemistry model. Atmospheric Pollution Research, 2020, 11, 319-331.	3.8	11
462	High particulate carbon deposition in Lhasa—a typical city in the Himalayan–Tibetan Plateau due to local contributions. Chemosphere, 2020, 247, 125843.	8.2	11
463	Can summer monsoon moisture invade the Jade Pass in Northwestern China?. Climate Dynamics, 2020, 55, 3101-3115.	3.8	11
464	Airborne bacterial communities over the Tibetan and Mongolian Plateaus: variations and their possible sources. Atmospheric Research, 2021, 247, 105215.	4.1	11
465	Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters, 2022, 17, 044068.	5.2	11
466	Summer monsoon and dust signals recorded in the Dasuopu firn core, central Himalayas. Science Bulletin, 1999, 44, 2010-2015.	1.7	10
467	Changes in annual accumulation retrieved from Geladaindong ice core and its relationship to atmospheric circulation over the Tibetan Plateau. Science Bulletin, 2007, 52, 3261-3266.	1.7	10
468	Mycetocola zhadangensis sp. nov., isolated from snow. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3375-3378.	1.7	10

#	Article	IF	CITATIONS
469	Dissolved organic carbon in glaciers of the southeastern Tibetan Plateau: Insights into concentrations and possible sources. PLoS ONE, 2018, 13, e0205414.	2.5	10
470	Autotrophic microbial community succession from glacier terminus to downstream waters on the Tibetan Plateau. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
471	Contrasting environmental factors drive bacterial and eukaryotic community successions in freshly deglaciated soils. FEMS Microbiology Letters, 2019, 366, .	1.8	10
472	Glacier mass and area changes on the Kenai Peninsula, Alaska, 1986–2016. Journal of Glaciology, 2020, 66, 603-617.	2.2	10
473	Characteristics of Dissolved Organic Matter from a Transboundary Himalayan Watershed: Relationships with Land Use, Elevation, and Hydrology. ACS Earth and Space Chemistry, 2020, 4, 449-456.	2.7	10
474	Continuously observed light absorbing impurities in snow cover over the southern Altai Mts. in China: Concentrations, impacts and potential sources. Environmental Pollution, 2021, 270, 116234.	7.5	10
475	Tracing Atmospheric Anthropogenic Black Carbon and Its Potential Radiative Response Over Panâ€Third Pole Region: A Synopticâ€5cale Analysis Using WRFâ€Chem. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	10
476	On the Relationship between Latitude and Altitude Temperature Effects. , 2009, , .		9
477	Terrestrial Water Storage Changes of Permafrost in the Three-River Source Region of the Tibetan Plateau, China. Advances in Meteorology, 2016, 2016, 1-13.	1.6	9
478	Records of anthropogenic antimony in the glacial snow from the southeastern Tibetan Plateau. Journal of Asian Earth Sciences, 2016, 131, 62-71.	2.3	9
479	Isotopic constraints on the formation pathways and sources of atmospheric nitrate in the Mt. Everest region. Environmental Pollution, 2020, 267, 115274.	7.5	9
480	Investigation of black carbon climate effects in the Arctic in winter and spring. Science of the Total Environment, 2021, 751, 142145.	8.0	9
481	Significant Influence of Carbonates on Determining Organic Carbon and Black Carbon: A Case Study in Tajikistan, Central Asia. Environmental Science & Technology, 2021, 55, 2839-2846.	10.0	9
482	Sources and light absorption characteristics of water-soluble organic carbon (WSOC) of atmospheric particles at a remote area in inner Himalayas and Tibetan Plateau. Atmospheric Research, 2021, 253, 105472.	4.1	9
483	Sulfur aerosols in the Arctic, Antarctic, and Tibetan Plateau: Current knowledge and future perspectives. Earth-Science Reviews, 2021, 220, 103753.	9.1	9
484	Atmospheric Brown Carbon on the Tibetan Plateau: Regional Differences in Chemical Composition and Light Absorption Properties. Environmental Science and Technology Letters, 2022, 9, 219-225.	8.7	9
485	Glacier Surface Speed Variations on the Kenai Peninsula, Alaska, 2014–2019. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	9
486	Seasonal and spatial variability of microparticles in snowpits on the Tibetan Plateau, China. Journal of Mountain Science, 2010, 7, 15-25.	2.0	8

#	Article	IF	CITATIONS
487	Glacier Variations in the Fedchenko Basin, Tajikistan, 1992–2006: Insights from Remote-sensing Images. Mountain Research and Development, 2014, 34, 56-65.	1.0	8
488	Twentieth-century warming preserved in a Geladaindong mountain ice core, central Tibetan Plateau. Annals of Glaciology, 2016, 57, 70-80.	1.4	8
489	Glacier snowline altitude variations in the Pamirs, Tajikistan, 1998-2013: insights from remote sensing images. Remote Sensing Letters, 2017, 8, 1220-1229.	1.4	8
490	Seasonal variations of organic carbon and nitrogen in the upper basins of Yangtze and Yellow Rivers. Journal of Mountain Science, 2017, 14, 1577-1590.	2.0	8
491	Concentration, spatiotemporal distribution, and sources of mercury in Mt. Yulong, a remote site in southeastern Tibetan Plateau. Environmental Science and Pollution Research, 2019, 26, 16457-16469.	5.3	8
492	Eight-year analysis of radiative properties of clouds and its impact on melting on the Laohugou Glacier No. 12, western Qilian Mountains. Atmospheric Research, 2021, 250, 105410.	4.1	8
493	New insights into trace elements in the water cycle of a karst-dominated glacierized region, southeast Tibetan Plateau. Science of the Total Environment, 2021, 751, 141725.	8.0	8
494	Characteristics of dissolved organic carbon and nitrogen in precipitation in the northern Tibetan Plateau. Science of the Total Environment, 2021, 776, 145911.	8.0	8
495	First observation of mercury species on an important water vapor channel in the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 2022, 22, 2651-2668.	4.9	8
496	Pressure and temperature feasibility of NCEP/NCAR reanalysis data at Mt. Everest. Journal of Mountain Science, 2008, 5, 32-37.	2.0	7
497	Records of volcanic events since AD 1800 in the East Rongbuk ice core from Mt. Qomolangma. Science Bulletin, 2009, 54, 1411-1416.	9.0	7
498	Variations in annual accumulation recorded in a Laohugou ice core from the northeastern Tibetan Plateau and their relationship with atmospheric circulation. Environmental Earth Sciences, 2016, 75, 1.	2.7	7
499	Health risk assessment of atmospheric polycyclic aromatic hydrocarbons over the Central Himalayas. Human and Ecological Risk Assessment (HERA), 2018, 24, 1969-1982.	3.4	7
500	Biomass-burning derived aromatic acids in NIST standard reference material 1649b and the environmental implications. Atmospheric Environment, 2018, 185, 180-185.	4.1	7
501	Microbial mercury methylation in the cryosphere: Progress and prospects. Science of the Total Environment, 2019, 697, 134150.	8.0	7
502	Understanding Mercury Cycling in Tibetan Glacierized Mountain Environment: Recent Progress and Remaining Gaps. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 672-678.	2.7	7
503	Assessments of the factors controlling latent heat flux and the coupling degree between an alpine wetland and the atmosphere on the Qinghai-Tibetan Plateau in summer. Atmospheric Research, 2020, 240, 104937.	4.1	7
504	Measurements of light-absorbing impurities in snow over four glaciers on the Tibetan Plateau. Atmospheric Research, 2020, 243, 105002.	4.1	7

#	Article	IF	CITATIONS
505	Isotopic signatures of stratospheric air at the Himalayas and beyond. Science Bulletin, 2021, 66, 323-326.	9.0	7
506	Melting Himalayas and mercury export: Results of continuous observations from the Rongbuk Glacier on Mt. Everest and future insights. Water Research, 2022, 218, 118474.	11.3	7
507	Evaluation of Water Storage Change of Inland Cryosphere in Northwestern China. Advances in Meteorology, 2015, 2015, 1-12.	1.6	6
508	Can Temperature Extremes in East Antarctica be Replicated from ERA Interim Reanalysis?. Arctic, Antarctic, and Alpine Research, 2016, 48, 603-621.	1.1	6
509	Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013. Advances in Atmospheric Sciences, 2018, 35, 628-644.	4.3	6
510	Long-term trends in the total columns of ozone and its precursor gases derived from satellite measurements during 2004–2015 over three different regions in South Asia: Indo-Gangetic Plain, Himalayas and Tibetan Plateau. International Journal of Remote Sensing, 2018, 39, 7384-7404.	2.9	6
511	Hydrochemical assessment (major ions and Hg) of meltwater in high altitude glacierized Himalayan catchment. Environmental Monitoring and Assessment, 2019, 191, 213.	2.7	6
512	A Complete Isotope (ĺí ¹⁵ N, ĺí ¹⁸ O, l̂" ¹⁷ O) Investigation of Atmospherically Deposited Nitrate in Glacialâ€Hydrologic Systems Across the Third Pole Region. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031878.	3.3	6
513	Natural versus anthropogenic sources and seasonal variability of insoluble precipitation residues at Laohugou Glacier in northeastern Tibetan Plateau. Environmental Pollution, 2020, 261, 114114.	7.5	6
514	Clacier elevation change in the Western Qilian mountains as observed by TerraSAR-X/TanDEM-X images. Geocarto International, 2021, 36, 1365-1377.	3.5	6
515	Response of dune activity on the Tibetan Plateau to near future climate change. Climate Research, 2016, 69, 1-8.	1.1	6
516	Feasibility comparison of reanalysis data from NCEP-I and NCEP-II in the Himalayas. Journal of Mountain Science, 2009, 6, 56-65.	2.0	5
517	Abundance and diversity of snow bacteria in two glaciers at the Tibetan Plateau. Frontiers of Earth Science, 2009, 3, 80-90.	0.5	5
518	Saline rhythm and climatic change since 20.6Âkyr bp from the Qiulinanmu Playa Lake in Tibet. Carbonates and Evaporites, 2010, 25, 5-14.	1.0	5
519	Summer hydrological characteristics in glacier and non-glacier catchments in the Nam Co Basin, southern Tibetan Plateau. Environmental Earth Sciences, 2015, 74, 2019-2028.	2.7	5
520	The effect of decreasing permafrost stability on ecosystem carbon in the northeastern margin of the Qinghai–Tibet Plateau. Scientific Reports, 2018, 8, 4172.	3.3	5
521	Large observational bias on discharge in the Indus River since 1970s. Scientific Reports, 2018, 8, 17291.	3.3	5
522	Chemical components and distributions in glaciers of the Third Pole. , 2020, , 71-134.		5

#	Article	IF	CITATIONS
523	Nitrogenous and carbonaceous aerosols in PM2.5 and TSP during pre-monsoon: Characteristics and sources in the highly polluted mountain valley. Journal of Environmental Sciences, 2022, 115, 10-24.	6.1	5
524	Arctic air mass triggered the extreme temperature events recorded in the Laohugou ice core from the northeastern Tibetan Plateau. Atmospheric Research, 2022, 265, 105909.	4.1	5
525	Spatiotemporal Variation of Snow Cover Frequency in the Qilian Mountains (Northwestern China) during 2000–2020 and Associated Circulation Mechanisms. Remote Sensing, 2022, 14, 2823.	4.0	5
526	Seasonal air temperature variations retrieved from a Geladaindong ice core, Tibetan Plateau. Journal of Chinese Geography, 2007, 17, 431-441.	3.9	4
527	Atmospheric black carbon and its effects on cryosphere. Advances in Climate Change Research, 2016, 7, 113-114.	5.1	4
528	Mercury Concentrations in the Fish Community from Indrawati River, Nepal. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 500-505.	2.7	4
529	Stream temperature dynamics in Nam Co basin, southern Tibetan Plateau. Journal of Mountain Science, 2017, 14, 2458-2470.	2.0	4
530	Spatial and temporal variations of refractory black carbon along the transect from Zhongshan Station to Dome A, eastern Antarctica. Atmospheric Environment, 2020, 242, 117816.	4.1	4
531	Microbial Community Composition Analysis in Spring Aerosols at Urban and Remote Sites over the Tibetan Plateau. Atmosphere, 2020, 11, 527.	2.3	4
532	Chemical characterization of submicron particulate matter (PM1) emitted by burning highland barley in the northeastern part of the Qinghai–Tibet Plateau. Atmospheric Environment, 2020, 224, 117351.	4.1	4
533	Culture Independent Diversity of Bacterial Communities Indigenous to Lower Altitude at Laohugou Glacial Environment. Geomicrobiology Journal, 2021, 38, 1-13.	2.0	4
534	PM1 chemical composition and light absorption properties in urban and rural areas within Sichuan Basin, southwest China. Environmental Pollution, 2021, 280, 116970.	7.5	4
535	Modification and coupled use of technologies are an essential envisioned need for bioaerosol study – An emerging public health concern. Fundamental Research, 2022, , .	3.3	4
536	Impacts of climate change and human activities on runoff changes in the Ob River Basin of the Arctic region from 1980 to 2017. Theoretical and Applied Climatology, 2022, 148, 1663-1674.	2.8	4
537	Regional Differences in the Light Absorption Properties of Fine Particulate Matter Over the Tibetan Plateau: Insights From HRâ€∢oFâ€AMS and Aethalometer Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	4
538	Long-term mercury variations in tree rings of the permafrost forest, northeastern China. Science China Earth Sciences, 2022, 65, 1328-1338.	5.2	4
539	Analysis between AMSR-E swath brightness temperature and ground snow depth data in winter time over Tibet Plateau, China. , 2010, , .		3
540	Analysis of the passive microwave high-frequency signal in the shallow snow retrieval. , 2011, , .		3

Analysis of the passive microwave high-frequency signal in the shallow snow retrieval. , 2011, , . 540

#	Article	IF	CITATIONS
541	Effectiveness of rare earth elements constrain on different materials: a case study in central Asia. Environmental Earth Sciences, 2012, 67, 1415-1421.	2.7	3
542	Poleward expansion of the tropical belt derived from upper tropospheric water vapour. International Journal of Climatology, 2015, 35, 2237-2242.	3.5	3
543	Comment on "lce Core Perspective on Mercury Pollution during the Past 600 Years― Environmental Science & Technology, 2016, 50, 1065-1067.	10.0	3
544	Trace elements analysis in hair strand of cooks chronically exposed to indoor air pollution in restaurants of Lhasa, Tibet: preliminary results. SN Applied Sciences, 2019, 1, 1.	2.9	3
545	Black Carbon in Surface Soil and Its Sources in Three Central Asian Countries. Archives of Environmental Contamination and Toxicology, 2021, 80, 558-566.	4.1	3
546	Glacial record of trace metal pollution over the Central Himalayas and its surroundings: Distribution, variation, and anthropogenic signals. Atmospheric Research, 2021, 251, 105428.	4.1	3
547	Increasing cloud water resource in a warming world. Environmental Research Letters, 2021, 16, 124067.	5.2	3
548	High-spatial-resolution distributions of aerosol chemical characteristics in urban Lanzhou, western China, during wintertime: Insights from an on-road mobile aerosol mass spectrometry measurement experiment. Science of the Total Environment, 2022, 819, 153069.	8.0	3
549	Fresh snow chemistry from high mountain regions in central himalayas. Chinese Geographical Science, 2000, 10, 218-225.	3.0	2
550	Concentration and seasonal variation of 10Be in surface aerosols of Lhasa, Tibet. Science Bulletin, 2010, 55, 2572-2578.	1.7	2
551	Spatiotemporal variations of monocarboxylic acids in snow layers along a transect from Zhongshan Station to Dome A, eastern Antarctica. Atmospheric Research, 2015, 158-159, 79-87.	4.1	2
552	Tracing the Provenance of Long-Range Transported Dust Deposition in Cryospheric Basins of the Northeast Tibetan Plateau: REEs and Trace Element Evidences. Atmosphere, 2018, 9, 461.	2.3	2
553	Review of pre-processing technologies for ice cores. Journal of Mountain Science, 2018, 15, 1950-1960.	2.0	2
554	Magnetic characteristics of lake sediments in Qiangyong Co Lake, southern Tibetan Plateau and their application to the evaluation of mercury deposition. Journal of Chinese Geography, 2020, 30, 1481-1494.	3.9	2
555	Shallow hot-point drill system for active layer temperature measurement along Zhongshan–Dome A traverse, Antarctica. Annals of Glaciology, 2021, 62, 157-165.	1.4	2
556	Quantification and implication of measurement bias of ambient atmospheric BC concentration. Atmospheric Environment, 2021, 249, 118244.	4.1	2
557	Lake water storage change estimation and its linkage with terrestrial water storage change in the northeastern Tibetan Plateau. Journal of Mountain Science, 2021, 18, 1737-1747.	2.0	2
558	Prediction of changes in water balance of Nam Co Lake under projected climate change scenarios. Hydrological Sciences Journal, 2021, 66, 1712-1727.	2.6	2

#	Article	IF	CITATIONS
559	Atmospheric Circulation and Glaciochemical Records. Encyclopedia of Earth Sciences Series, 2011, , 75-76.	0.1	2
560	Concentrations, Compositions, and Deposition Rates of Dissolved Nitrogen in Western China: Insights From Snow Records. Frontiers in Environmental Science, 2022, 9, .	3.3	2
561	Seasonal taxonomic composition of microbial communal shaping the bioaerosols milieu of the urban city of Lanzhou. Archives of Microbiology, 2022, 204, 222.	2.2	2
562	Correction to "Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest)― Journal of Geophysical Research, 2008, 113, .	3.3	1
563	On the Relationship between Global Warming and Dust Storm Variation in China. , 2009, , .		1
564	Chemical components and distributions in precipitation in the Third Pole. , 2020, , 3-41.		1
565	Nutrients and organic carbons in river waters of the Third Pole. , 2020, , 179-209.		1
566	Spatial distribution and potential sources of methanesulfonic acid in High Asia glaciers. Atmospheric Research, 2021, 248, 105227.	4.1	1
567	STUDY OF AEROSOL OPTICAL PROPERTIES OVER TWO SITES IN THE FOOTHILLS OF THE CENTRAL HIMALAYAS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 1493-1497.	0.2	1
568	Bioaccumulation of mercury in fishes of Jagadishpur Reservoir, Nepal. Nepal Journal of Environmental Science, 0, 7, 17-23.	0.3	1
569	Atmospheric Aerosol Elements over the Inland Tibetan Plateau: Concentration, Seasonality, and Transport. Aerosol and Air Quality Research, 2015, , .	2.1	1
570	Spatiotemporal Pattern of Occurrence Time of Extreme Precipitation and Circulation Mechanisms in the Arid Region of Northwest China. Frontiers in Earth Science, 0, 10, .	1.8	1
571	Sea-salt aerosol transport patterns over the Northern Hemisphere inferred from two subarctic ice core records. Science in China Series D: Earth Sciences, 2005, 48, 576-584.	0.9	0
572	Impact of Global Warming on Altitude Effect in China in the Past Half Century. , 2009, , .		0
573	Data on DOC and N from the Muz taw glacier in Central Asia. Data in Brief, 2020, 30, 105556.	1.0	0
574	Microscale spatial variability of snowpack: isotopic and chemical heterogeneity of a firn pack at Qomolangma (Mount Everest), central Himalaya. Annals of Glaciology, 2008, 49, 173-178.	1.4	0