Gian Paolo Dotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2968439/publications.pdf

Version: 2024-02-01

40 papers 2,521 citations

304743 22 h-index 289244 40 g-index

44 all docs 44 docs citations

44 times ranked 4871 citing authors

#	Article	IF	Citations
1	Sphingolipids control dermal fibroblast heterogeneity. Science, 2022, 376, eabh1623.	12.6	73
2	Phenformin Promotes Keratinocyte Differentiation via the Calcineurin/NFAT Pathway. Journal of Investigative Dermatology, 2021, 141, 152-163.	0.7	12
3	Flash forward genetics: new twists in transcription across evolutionary boundaries. EMBO Reports, 2021, 22, e52152.	4.5	1
4	HSD17B7 gene in selfâ€renewal and oncogenicity of keratinocytes from Black versus White populations. EMBO Molecular Medicine, 2021, 13, e14133.	6.9	8
5	Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. Journal of Experimental Medicine, 2021, 218, .	8.5	31
6	To be or not to be. EMBO Reports, 2020, 21, e50861.	4.5	2
7	NOTCH1 gene amplification promotes expansion of Cancer Associated Fibroblast populations in human skin. Nature Communications, 2020, 11, 5126.	12.8	25
8	Conjectures, refutations and the search for truths. EMBO Reports, 2020, 21, e49924.	4.5	1
9	Dualism of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell Reports, 2019, 28, 2358-2372.e6.	6.4	73
10	CSL controls telomere maintenance and genome stability in human dermal fibroblasts. Nature Communications, 2019, 10, 3884.	12.8	16
11	Gender and sex—time to bridge the gap. EMBO Molecular Medicine, 2019, 11, .	6.9	10
12	Sex Hormones and Anticancer Immunity. Clinical Cancer Research, 2019, 25, 4603-4610.	7.0	82
13	A role for stromal autophagy in cancer-associated fibroblast activation. Autophagy, 2019, 15, 738-739.	9.1	15
14	Autophagy Controls CSL/RBPJκ Stability through a p62/SQSTM1-Dependent Mechanism. Cell Reports, 2018, 24, 3108-3114.e4.	6.4	20
15	Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B. Journal of Clinical Investigation, 2018, 128, 2581-2599.	8.2	24
16	Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. Journal of Clinical Investigation, 2018, 128, 5531-5548.	8.2	40
17	Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. Journal of Experimental Medicine, 2017, 214, 2349-2368.	8.5	33
18	The ULK3 Kinase Is Critical for Convergent Control of Cancer-Associated Fibroblast Activation by CSL and GLI. Cell Reports, 2017, 20, 2468-2479.	6.4	41

#	Article	IF	Citations
19	Sexual dimorphism in cancer. Nature Reviews Cancer, 2016, 16, 330-339.	28.4	243
20	Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell, 2016, 29, 622-637.	16.8	237
21	Negative control of CSL gene transcription by stress/DNA damage response and p53. Cell Cycle, 2016, 15, 1767-1778.	2.6	15
22	CSL-p53: From senescence to CAF activation. Cell Cycle, 2016, 15, 485-486.	2.6	7
23	PDCD4 is a CSL associated protein with a transcription repressive function in cancer associated fibroblast activation. Oncotarget, 2016, 7, 58717-58727.	1.8	13
24	Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nature Cell Biology, 2015, 17, 1193-1204.	10.3	170
25	miR-34a/SIRT6 in squamous differentiation and cancer. Cell Cycle, 2014, 13, 1055-1056.	2.6	22
26	Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. Journal of Clinical Investigation, 2014, 124, 1446-1453.	8.2	120
27	Multifactorial $\mathrm{ER}\hat{l}^2$ and NOTCH1 control of squamous differentiation and cancer. Journal of Clinical Investigation, 2014, 124, 2260-2276.	8.2	44
28	A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO Journal, 2013, 32, 2248-2263.	7.8	118
29	Mesenchymal stroma: primary determinant and therapeutic target for epithelial cancer. Trends in Cell Biology, 2013, 23, 593-602.	7.9	46
30	The Retinoid-Related Orphan Receptor RORα Promotes Keratinocyte Differentiation via FOXN1. PLoS ONE, 2013, 8, e70392.	2.5	43
31	Multifocal Epithelial Tumors and Field Cancerization from Loss of Mesenchymal CSL Signaling. Cell, 2012, 149, 1207-1220.	28.9	199
32	p63 and FGFR: when development meets proliferation. EMBO Molecular Medicine, 2012, 4, 165-167.	6.9	4
33	Calcineurin Signaling as a Negative Determinant of Keratinocyte Cancer Stem Cell Potential and Carcinogenesis. Cancer Research, 2011, 71, 2029-2033.	0.9	23
34	Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature, 2010, 465, 368-372.	27.8	258
35	Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Reviews Cancer, 2009, 9, 587-595.	28.4	157
36	Dysregulated Notch signaling induces pathological arterialization of developing lymphatics in Down syndrome fetus FASEB Journal, 2007, 21, A15.	0.5	1

#	Article	IF	CITATIONS
37	DEVELOPMENTAL BIOLOGY: Rac1 Up for Epidermal Stem Cells. Science, 2005, 309, 890-891.	12.6	12
38	Integration of Notch 1 and Calcineurin/NFAT Signaling Pathways in Keratinocyte Growth and Differentiation Control. Developmental Cell, 2005, 8, 665-676.	7.0	163
39	More Than Cell Death. Developmental Cell, 2004, 7, 2-3.	7.0	10
40	Signal Transduction Pathways Controlling the Switch Between Keratinocyte Growth and Differentiation. Critical Reviews in Oral Biology and Medicine, 1999, 10, 442-457.	4.4	98