Michael G Tomlinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2964250/publications.pdf

Version: 2024-02-01

69 papers 3,206 citations

30 h-index 56 g-index

72 all docs 72 docs citations

times ranked

72

3433 citing authors

#	Article	IF	CITATIONS
1	Crystal structure of the Tspan15 LEL domain reveals a conserved ADAM10 binding site. Structure, 2022, 30, 206-214.e4.	3.3	13
2	The Platelet Collagen Receptor GPVI Is Cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 Molecular Scissors. International Journal of Molecular Sciences, 2022, 23, 2440.	4.1	7
3	Evidence that GPVI is Expressed as a Mixture of Monomers and Dimers, and that the D2 Domain is not Essential for GPVI Activation. Thrombosis and Haemostasis, 2021, 121, 1435-1447.	3.4	19
4	Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. International Journal of Molecular Sciences, 2021, 22, 6707.	4.1	25
5	The metalloproteinase ADAM10 requires its activity to sustain surface expression. Cellular and Molecular Life Sciences, 2021, 78, 715-732.	5.4	17
6	Transmembrane adaptor protein WBP1L regulates CXCR4 signalling and murine haematopoiesis. Journal of Cellular and Molecular Medicine, 2020, 24, 1980-1992.	3 . 6	6
7	The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex. Journal of Biological Chemistry, 2020, 295, 12822-12839.	3.4	31
8	Tspan18 is a novel regulator of thrombo-inflammation. Medical Microbiology and Immunology, 2020, 209, 553-564.	4.8	10
9	TspanC8 tetraspanins differentially regulate ADAM10 endocytosis and half-life. Life Science Alliance, 2020, 3, e201900444.	2.8	29
10	Tspan18 is a novel regulator of the Ca2+ channel Orai1 and von Willebrand factor release in endothelial cells. Haematologica, 2019, 104, 1892-1905.	3 . 5	16
11	TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 344-352.	2.4	42
12	C-type lectin-like receptor 2 (CLEC-2)-dependent DC migration is controlled by tetraspanin CD37. Journal of Cell Science, 2018, 131, .	2.0	12
13	Regulation of Leukocytes by TspanC8 Tetraspanins and the "Molecular Scissor―ADAM10. Frontiers in Immunology, 2018, 9, 1451.	4.8	24
14	The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation. FASEB Journal, 2018, 32, 3560-3573.	0.5	26
15	Inhibition of Btk by Btk-specific concentrations of ibrutinib and acalabrutinib delays but does not block platelet aggregation mediated by glycoprotein VI. Haematologica, 2018, 103, 2097-2108.	3 . 5	54
16	Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The	2.3	106
	emerging role of tetraspanins and rhomboids. Platelets, 2017, 28, 333-341.		_
17	Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochemical Society Transactions, 2017, 45, 719-730.	3.4	56

#	Article	IF	CITATIONS
19	Utilizing Lentiviral Gene Transfer in Primary Endothelial Cells to Assess Lymphocyte-Endothelial Interactions. Methods in Molecular Biology, 2017, 1591, 155-168.	0.9	3
20	Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets, 2017, 28, 629-642.	2.3	21
21	Quantitative Phosphoproteomics Reveals a Role for Collapsin Response Mediator Protein 2 in PDGF-Induced Cell Migration. Scientific Reports, 2017, 7, 3970.	3.3	8
22	Eye-Opening Potential for Tetraspanin Tspan12 as a Therapeutic Target for Diseases of the Retinal Vasculature. Circulation, 2017, 136, 196-199.	1.6	8
23	Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study. Molecular and Cellular Proteomics, 2016, 15, 1823-1836.	3.8	10
24	LAR protein tyrosine phosphatase regulates focal adhesions via CDK1. Journal of Cell Science, 2016, 129, 2962-71.	2.0	52
25	TspanC8 Tetraspanins and A Disintegrin and Metalloprotease 10 (ADAM10) Interact via Their Extracellular Regions. Journal of Biological Chemistry, 2016, 291, 3145-3157.	3.4	86
26	SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice. Blood, 2015, 125, 185-194.	1.4	27
27	Organisation of the Tetraspanin Web. , 2013, , 47-90.		5
28	Circulating DBP level and prognosis in operated lung cancer: an exploration of pathophysiology. European Respiratory Journal, 2013, 41, 410-416.	6.7	28
29	The TspanC8 Subgroup of Tetraspanins Interacts with A Disintegrin and Metalloprotease 10 (ADAM10) and Regulates Its Maturation and Cell Surface Expression. Journal of Biological Chemistry, 2012, 287, 39753-39765.	3.4	147
30	The emerging role of tetraspanin microdomains on endothelial cells. Biochemical Society Transactions, 2011, 39, 1667-1673.	3.4	66
31	Tetraspanin microdomains: fine-tuning platelet function. Biochemical Society Transactions, 2011, 39, 518-523.	3.4	11
32	CLEC-2 activates Syk through dimerization. Blood, 2010, 115, 2947-2955.	1.4	144
33	Platelet tetraspanins: small but interesting. Journal of Thrombosis and Haemostasis, 2009, 7, 2070-2073.	3.8	19
34	The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood, 2009, 113, 4942-4954.	1.4	115
35	Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochemical Journal, 2009, 417, 391-401.	3.7	68
36	G6b-B Inhibits Constitutive and Agonist-induced Signaling by Glycoprotein VI and CLEC-2. Journal of Biological Chemistry, 2008, 283, 35419-35427.	3.4	60

#	Article	IF	Citations
37	A Comprehensive Proteomics and Genomics Analysis Reveals Novel Transmembrane Proteins in Human Platelets and Mouse Megakaryocytes Including G6b-B, a Novel Immunoreceptor Tyrosine-based Inhibitory Motif Protein. Molecular and Cellular Proteomics, 2007, 6, 548-564.	3.8	140
38	The C-type Lectin Receptors CLEC-2 and Dectin-1, but Not DC-SIGN, Signal via a Novel YXXL-dependent Signaling Cascade. Journal of Biological Chemistry, 2007, 282, 12397-12409.	3.4	193
39	Glycoprotein VI oligomerization in cell lines and platelets. Journal of Thrombosis and Haemostasis, 2007, 5, 1026-1033.	3.8	51
40	Collagen promotes sustained glycoprotein VI signaling in platelets and cell lines. Journal of Thrombosis and Haemostasis, 2007, 5, 2274-2283.	3.8	59
41	Differentiation of murine committed megakaryocytic progenitors isolated by a novel strategy reveals the complexity of GATA and Ets factor involvement in megakaryocytopoiesis and an unexpected potential role for GATA-6. Experimental Hematology, 2006, 34, 654-663.	0.4	22
42	Signalling by the Platelet C-Type Lectin Receptor CLEC-2 Is Mediated by a Novel Mechanism Involving Syk and a Single YxxL Motif Blood, 2005, 106, 381-381.	1.4	0
43	Expression and Function of Tec, Itk, and Btk in Lymphocytes: Evidence for a Unique Role for Tec. Molecular and Cellular Biology, 2004, 24, 2455-2466.	2.3	81
44	SHIP Family Inositol Phosphatases Interact with and Negatively Regulate the Tec Tyrosine Kinase. Journal of Biological Chemistry, 2004, 279, 55089-55096.	3.4	49
45	T Cell Receptor-Independent Basal Signaling via Erk and Abl Kinases Suppresses RAG Gene Expression. PLoS Biology, 2003, 1, e53.	5.6	88
46	A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells. BMC Immunology, 2001, 2, 4.	2.2	54
47	TGF- \hat{l}^21 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. European Journal of Immunology, 2000, 30, 2639-2649.	2.9	150
48	Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Trends in Immunology, 2000, 21, 584-591.	7. 5	115
49	The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase activity. Oncogene, 2000, 19, 200-209.	5.9	52
50	Reconstitution of Btk Signaling by the Atypical Tec Family Tyrosine Kinases Bmx and Txk. Journal of Biological Chemistry, 1999, 274, 13577-13585.	3.4	54
51	A collagen-related peptide regulates phospholipase CÎ ³ 2 via phosphatidylinositol 3-kinase in human platelets. Biochemical Journal, 1999, 342, 171-177.	3.7	112
52	The architecture and interactions of leucocyte surface molecules. , 1997, , 101-129.		4
53	CD53., 1997,, 276-277.		0
54	CD37., 1997,, 224-225.		0

#	Article	IF	Citations
55	CD82., 1997,, 339-340.		O
56	CD81., 1997,, 337-338.		0
57	CD63., 1997,, 304-305.		O
58	Protein superfamilies and cell surface molecules. , 1997, , 32-100.		0
59	CD9., 1997,, 152-153.		1
60	CD151., 1997,, 414.		0
61	Characterisation of mouse CD37: cDNA and genomic cloning. Molecular Immunology, 1996, 33, 867-872.	2.2	17
62	A new transmembrane 4 superfamily molecule in the nematode, Caenorhabditis elegans. Journal of Molecular Evolution, 1996, 43, 312-314.	1.8	18
63	A New Transmembrane 4 Superfamily Molecule in the Nematode, Caenorhabditis elegans. Journal of Molecular Evolution, 1996, 43, 312-314.	1.8	0
64	Characterization of mouse CD53: Epitope mapping, cellular distribution and induction by T cell receptor engagement during repertoire selection. European Journal of Immunology, 1995, 25, 2201-2205.	2.9	31
65	Mapping of the genes for four members of the transmembrane 4 superfamily: mouse Cd9, Cd63, Cd81, and Cd82. Immunogenetics, 1995, 42, 422-5.	2.4	4
66	The effect of various stresses, corticosteroids and adrenergic agents on phagocytosis in the rainbow trout Oncorhynchus mykiss. Fish Physiology and Biochemistry, 1994, 13, 31-40.	2.3	95
67	The ins and outs of the transmembrane 4 superfamily. Trends in Immunology, 1994, 15, 588-594.	7.5	327
68	Epitope mapping of anti-rat CD53 monoclonal antibodies. Implications for the membrane orientation of the Transmembrane 4 Superfamily. European Journal of Immunology, 1993, 23, 136-140.	2.9	43
69	Gene structure, chromosomal localization, and protein sequence of mouse CD53 (Cd53): evidence that the transmembrane 4 superfamily arose by gene duplication. International Immunology, 1993, 5, 209-216.	4.0	37