
Carri J Leroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2962503/publications.pdf

Version: 2024-02-01

CADDILLEDOV

#	Article	IF	CITATIONS
1	A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 2006, 7, 510-523.	16.3	911
2	PLANT–SOIL–MICROORGANISM INTERACTIONS: HERITABLE RELATIONSHIP BETWEEN PLANT GENOTYPE AND ASSOCIATED SOIL MICROORGANISMS. Ecology, 2008, 89, 773-781.) 3.2	310
3	Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology, 2006, 51, 605-617.	2.4	182
4	Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486.	10.3	133
5	Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment, 2013, 11, 423-432.	4.0	128
6	Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology, 2017, 23, 3064-3075.	9.5	103
7	Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. Journal of the North American Benthological Society, 2007, 26, 426-438.	3.1	99
8	PLANT GENES LINK FORESTS AND STREAMS. Ecology, 2006, 87, 255-261.	3.2	86
9	Synergistic effects: a common theme in mixedâ€species litter decomposition. New Phytologist, 2020, 227, 757-765.	7.3	60
10	Leaf litter from insectâ€resistant transgenic trees causes changes in aquatic insect community composition. Journal of Applied Ecology, 2011, 48, 1472-1479.	4.0	36
11	Genotype and soil nutrient environment influence aspen litter chemistry and in-stream decomposition. Freshwater Science, 2012, 31, 1244-1253.	1.8	31
12	Plant phylogenetic history explains inâ€stream decomposition at a global scale. Journal of Ecology, 2020, 108, 17-35.	4.0	30
13	A fungal endophyte slows litter decomposition in streams. Freshwater Biology, 2011, 56, 1426-1433.	2.4	28
14	Impacts of invasive riparian knotweed on litter decomposition, aquatic fungi, and macroinvertebrates. Biological Invasions, 2014, 16, 1531-1544.	2.4	28
15	Conservation Projects in Prison: The Case for Engaging Incarcerated Populations in Conservation and Science. Natural Areas Journal, 2015, 35, 90-97.	0.5	22
16	Tree genetics strongly affect forest productivity, but intraspecific diversity–productivity relationships do not. Functional Ecology, 2017, 31, 520-529.	3.6	21
17	Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. Global Biogeochemical Cycles, 2022, 36, .	4.9	12
18	Functional and heritable consequences of plant genotype on community composition and ecosystem processes. , 2012, , 371-390.		11

CARRI J LEROY

#	Article	IF	CITATIONS
19	Indirect influences of a major drought on leaf litter quality and decomposition in a southwestern stream. Fundamental and Applied Limnology, 2014, 184, 1-10.	0.7	10
20	Plant sex influences aquatic–terrestrial interactions. Ecosphere, 2020, 11, e02994.	2.2	9
21	Fungal endophyteâ€infected leaf litter alters inâ€stream microbial communities and negatively influences aquatic fungal sporulation. Oikos, 2019, 128, 405-415.	2.7	8
22	Do genetically-specific tree canopy environments feed back to affect genetically specific leaf decomposition rates?. Plant and Soil, 2019, 437, 1-10.	3.7	7
23	Variation in riparian and stream assemblages across the primary succession landscape of Mount St. Helens, U.S.A Freshwater Biology, 2021, 66, 1002-1017.	2.4	6
24	Diversity-Carbon Flux Relationships in a Northwest Forest. Diversity, 2012, 4, 33-58.	1.7	5
25	Aphid Gall Interactions with Forest Tree Genotypes Influence Leaf Litter Decomposition in Streams. Forests, 2020, 11, 182.	2.1	5
26	Aquatic–terrestrial interactions: Mosaics of intermittency, interconnectivity and temporality. Functional Ecology, 2019, 33, 1583-1585.	3.6	3
27	Benefits of permanent adoption of virtual conferences for conservation science. Conservation Biology, 2022, 36, .	4.7	3
28	Bringing science inside prison walls. Science, 2015, 348, 511-511.	12.6	1