
Emilie Roger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2961434/publications.pdf Version: 2024-02-01

EMILIE ROCER

#	Article	IF	CITATIONS
1	Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. Journal of Drug Delivery Science and Technology, 2022, 70, 103256.	3.0	21
2	A new method to prepare microparticles based on an Aqueous Two-Phase system (ATPS), without organic solvents. Journal of Colloid and Interface Science, 2021, 599, 642-649.	9.4	16
3	Drug Delivery Systems for the Oral Administration of Antimicrobial Peptides: Promising Tools to Treat Infectious Diseases. Frontiers in Medical Technology, 2021, 3, 778645.	2.5	19
4	Organic nanoparticle tracking during pharmacokinetic studies. Nanomedicine, 2021, 16, 2539-2536.	3.3	4
5	Aqueous Two-Phase Systems: simple one-step process formulation and phase diagram for characterisation. Colloid and Polymer Science, 2020, 298, 1629-1636.	2.1	2
6	<p>Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far</p> . International Journal of Nanomedicine, 2019, Volume 14, 2497-2513.	6.7	15
7	<p>Di-O-lauroyl-decitabine-lipid nanocapsules: toward extending decitabine activity</p> . International Journal of Nanomedicine, 2019, Volume 14, 2091-2102.	6.7	6
8	Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Delivery, 2018, 25, 1756-1765.	5.7	42
9	Advances in treatment formulations for acute myeloid leukemia. Drug Discovery Today, 2018, 23, 1936-1949.	6.4	40
10	Models for drug absorption from the small intestine: where are we and where are we going?. Drug Discovery Today, 2017, 22, 761-775.	6.4	85
11	Lipid nanocapsules maintain full integrity after crossing a human intestinal epithelium model. Journal of Controlled Release, 2017, 253, 11-18.	9.9	33
12	Alginate/Chitosan Compact Polyelectrolyte Complexes: A Cell and Bacterial Repellent Material. Chemistry of Materials, 2017, 29, 10418-10425.	6.7	28
13	Development and in vitro evaluations of new decitabine nanocarriers for the treatment of acute myeloid leukemia. International Journal of Nanomedicine, 2017, Volume 12, 8427-8442.	6.7	16
14	Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal?. Journal of Experimental and Clinical Cancer Research, 2017, 36, 135.	8.6	26
15	How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability?. Advanced Drug Delivery Reviews, 2016, 106, 320-336.	13.7	78
16	On the Benefits of Rubbing Salt in the Cut: Selfâ€Healing of Saloplastic PAA/PAH Compact Polyelectrolyte Complexes. Advanced Materials, 2014, 26, 2547-2551.	21.0	113
17	CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. Journal of Controlled Release, 2013, 171, 280-287.	9.9	168
18	Catalytic Saloplastics: Alkaline Phosphatase Immobilized and Stabilized in Compacted Polyelectrolyte Complexes. Advanced Functional Materials, 2013, 23, 4785-4792.	14.9	14

Emilie Roger

#	Article	IF	CITATIONS
19	Compact Saloplastic Poly(Acrylic Acid)/Poly(Allylamine) Complexes: Kinetic Control Over Composition, Microstructure, and Mechanical Properties. Advanced Functional Materials, 2013, 23, 673-682.	14.9	60
20	Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Advances, 2012, 2, 11876.	3.6	133
21	Folic Acid Functionalized Nanoparticles for Enhanced Oral Drug Delivery. Molecular Pharmaceutics, 2012, 9, 2103-2110.	4.6	149
22	Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 181-188.	4.3	97
23	Reciprocal competition between lipid nanocapsules and P-gp for paclitaxel transport across Caco-2 cells. European Journal of Pharmaceutical Sciences, 2010, 40, 422-429.	4.0	52
24	Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine, 2010, 5, 287-306.	3.3	264
25	The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine, 2010, 5, 1415-1433.	3.3	147
26	Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. Journal of Controlled Release, 2009, 140, 174-181.	9.9	237
27	The gastrointestinal stability of lipid nanocapsules. International Journal of Pharmaceutics, 2009, 379, 260-265.	5.2	82
28	Lipid nanocapsules: Ready-to-use nanovectors for the aerosol delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 239-246.	4.3	86