
Budiman B Minasny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2960980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On digital soil mapping. Geoderma, 2003, 117, 3-52.	2.3	2,543
2	Soil carbon 4 per mille. Geoderma, 2017, 292, 59-86.	2.3	1,279
3	The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 2013, 164, 80-99.	2.5	1,143
4	A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 2006, 32, 1378-1388.	2.0	719
5	Digital Soil Map of the World. Science, 2009, 325, 680-681.	6.0	469
6	Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.	1.3	445
7	Digital soil mapping: A brief history and some lessons. Geoderma, 2016, 264, 301-311.	2.3	403
8	Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 2009, 154, 138-152.	2.3	365
9	Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 2017, 55, 1199-1256.	9.0	316
10	Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 2018, 69, 39-47.	1.8	315
11	Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 1999, 93, 225-253.	2.3	313
12	From pedotransfer functions to soil inference systems. Geoderma, 2002, 109, 41-73.	2.3	310
13	Colour space models for soil science. Geoderma, 2006, 133, 320-337.	2.3	309
14	Towards a global-scale soil climate mitigation strategy. Nature Communications, 2020, 11, 5427.	5.8	302
15	Digital Mapping of Soil Carbon. Advances in Agronomy, 2013, , 1-47.	2.4	296
16	Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma, 2019, 352, 251-267.	2.3	262
17	GlobalSoilMap. Advances in Agronomy, 2014, , 93-134.	2.4	246
18	Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoS ONE, 2014, 9, e105519.	1.1	245

#	Article	IF	CITATIONS
19	Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma, 2015, 241-242, 180-209.	2.3	237
20	The Matérn function as a general model for soil variograms. Geoderma, 2005, 128, 192-207.	2.3	236
21	Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma, 2011, 167-168, 118-124.	2.3	229
22	Soil Security: Solving the Global Soil Crisis. Global Policy, 2013, 4, 434-441.	1.0	219
23	Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 2020, 210, 103359.	4.0	215
24	Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 2014, 213, 15-28.	2.3	208
25	Predicting soil properties in the tropics. Earth-Science Reviews, 2011, 106, 52-62.	4.0	198
26	Machine learning and soil sciences: a review aided by machine learning tools. Soil, 2020, 6, 35-52.	2.2	195
27	Spatial prediction of soil properties using EBLUP with the Matérn covariance function. Geoderma, 2007, 140, 324-336.	2.3	182
28	Highâ€Resolution 3â€Ð Mapping of Soil Texture in Denmark. Soil Science Society of America Journal, 2013, 77, 860-876.	1.2	180
29	The carbon sequestration potential of terrestrial ecosystems. Journal of Soils and Water Conservation, 2018, 73, 145A-152A.	0.8	180
30	Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2008, 94, 72-79.	1.8	177
31	Global soil organic carbon assessment. Global Food Security, 2015, 6, 9-16.	4.0	176
32	Using deep learning to predict soil properties from regional spectral data. Geoderma Regional, 2019, 16, e00198.	0.9	176
33	Quantitative models for pedogenesis — A review. Geoderma, 2008, 144, 140-157.	2.3	171
34	Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley. Soil Research, 2006, 44, 233.	0.6	169
35	Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 2022, 409, 115567.	2.3	167
36	Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma, 2006, 136, 272-278.	2.3	164

#	Article	IF	CITATIONS
37	Soil Properties Drive Microbial Community Structure in a Large Scale Transect in South Eastern Australia. Scientific Reports, 2018, 8, 11725.	1.6	155
38	Kriging Method Evaluation for Assessing the Spatial Distribution of Urban Soil Lead Contamination. Journal of Environmental Quality, 2002, 31, 1576-1588.	1.0	146
39	Using deep learning for digital soil mapping. Soil, 2019, 5, 79-89.	2.2	144
40	High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 2014, 213, 296-311.	2.3	139
41	Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis. Catena, 2016, 139, 220-231.	2.2	138
42	Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use and Management, 2007, 23, 437-443.	2.6	136
43	Pedology and digital soil mapping (DSM). European Journal of Soil Science, 2019, 70, 216-235.	1.8	136
44	Towards digital soil morphometrics. Geoderma, 2014, 230-231, 305-317.	2.3	134
45	Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma, 2011, 160, 614-626.	2.3	132
46	An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma, 2016, 279, 31-44.	2.3	124
47	A rudimentary mechanistic model for soil production and landscape development. Geoderma, 1999, 90, 3-21.	2.3	122
48	Disaggregating and harmonising soil map units through resampled classification trees. Geoderma, 2014, 214-215, 91-100.	2.3	122
49	Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma, 2014, 232-234, 34-44.	2.3	113
50	The Method for Fitting Neural Network Parametric Pedotransfer Functions. Soil Science Society of America Journal, 2002, 66, 352.	1.2	104
51	Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma, 2010, 155, 132-139.	2.3	103
52	Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 2017, 14, 1-19.	1.4	102
53	Digital mapping of peatlands – A critical review. Earth-Science Reviews, 2019, 196, 102870.	4.0	102
54	Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma, 2014, 214-215, 101-113.	2.3	101

#	Article	IF	CITATIONS
55	A quantitative model for integrating landscape evolution and soil formation. Journal of Geophysical Research F: Earth Surface, 2013, 118, 331-347.	1.0	99
56	Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties. Geoderma, 2009, 153, 155-162.	2.3	97
57	Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma, 2018, 313, 25-40.	2.3	96
58	Neural Networks Prediction of Soil Hydraulic Functions for Alluvial Soils Using Multistep Outflow Data. Soil Science Society of America Journal, 2004, 68, 417-429.	1.2	94
59	A rudimentary mechanistic model for soil formation and landscape development. Geoderma, 2001, 103, 161-179.	2.3	93
60	Comparing temperature correction models for soil electrical conductivity measurement. Precision Agriculture, 2011, 12, 55-66.	3.1	93
61	How fast does soil grow?. Geoderma, 2014, 216, 48-61.	2.3	91
62	Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma, 2015, 253-254, 67-77.	2.3	90
63	Transfer learning to localise a continental soil vis-NIR calibration model. Geoderma, 2019, 340, 279-288.	2.3	86
64	Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, 2017, 290, 91-99.	2.3	84
65	The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 2020, 6, 565-578.	2.2	84
66	Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma, 2007, 142, 285-293.	2.3	82
67	Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precision Agriculture, 2011, 12, 233-248.	3.1	82
68	Chile and the Chilean soil grid: A contribution to GlobalSoilMap. Geoderma Regional, 2017, 9, 17-28.	0.9	80
69	Soil pH increase under paddy in South Korea between 2000 and 2012. Agriculture, Ecosystems and Environment, 2016, 221, 205-213.	2.5	77
70	POLARIS Soil Properties: 30â€m Probabilistic Maps of Soil Properties Over the Contiguous United States. Water Resources Research, 2019, 55, 2916-2938.	1.7	77
71	Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Soil Research, 2001, 39, 259.	0.6	76
72	Resolving the integral connection between pedogenesis and landscape evolution. Earth-Science Reviews, 2015, 150, 102-120.	4.0	76

#	Article	IF	CITATIONS
73	The Australian soil texture boomerang: a comparison of the Australian and USDA/FAO soil particle-size classification systems. Soil Research, 2001, 39, 1443.	0.6	74
74	Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. International Journal of Environmental Science and Technology, 2015, 12, 1965-1974.	1.8	74
75	Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma, 2007, 141, 1-14.	2.3	73
76	Analysis and prediction of soil properties using local regression-kriging. Geoderma, 2012, 171-172, 16-23.	2.3	73
77	Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, 2011, 62, 728-732.	1.8	72
78	Synergistic Use of Visâ€NIR, MIR, and XRF Spectroscopy for the Determination of Soil Geochemistry. Soil Science Society of America Journal, 2016, 80, 888-899.	1.2	72
79	Mechanistic soil–landscape modelling as an approach to developing pedogenetic classifications. Geoderma, 2006, 133, 138-149.	2.3	71
80	Using Google's cloud-based platform for digital soil mapping. Computers and Geosciences, 2015, 83, 80-88.	2.0	71
81	Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy. Science of the Total Environment, 2020, 702, 134723.	3.9	71
82	Using soil knowledge for the evaluation of midâ€infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties. European Journal of Soil Science, 2008, 59, 960-971.	1.8	70
83	Uncertainty analysis for pedotransfer functions. European Journal of Soil Science, 2002, 53, 417-429.	1.8	69
84	Farm-scale soil carbon auditing. Geoderma, 2016, 265, 120-130.	2.3	68
85	More Data or a Better Model? Figuring Out What Matters Most for the Spatial Prediction of Soil Carbon. Soil Science Society of America Journal, 2017, 81, 1413-1426.	1.2	67
86	Mapping key soil properties to support agricultural production in Eastern China. Geoderma Regional, 2017, 10, 144-153.	0.9	66
87	Multi-source data integration for soil mapping using deep learning. Soil, 2019, 5, 107-119.	2.2	66
88	Comparing regression-based digital soil mapping and multiple-point geostatistics for the spatial extrapolation of soil data. Geoderma, 2016, 262, 243-253.	2.3	64
89	Game theory interpretation of digital soil mapping convolutional neural networks. Soil, 2020, 6, 389-397.	2.2	64
90	On measuring pedodiversity. Geoderma, 2007, 141, 149-154.	2.3	63

#	Article	IF	CITATIONS
91	The variance quadtree algorithm: Use for spatial sampling design. Computers and Geosciences, 2007, 33, 383-392.	2.0	62
92	Mapping soil organic carbon content over New South Wales, Australia using local regression kriging. Geoderma Regional, 2016, 7, 38-48.	0.9	62
93	Evaluation and development of hydraulic conductivity pedotransfer functions for Australian soil. Soil Research, 2000, 38, 905.	0.6	59
94	Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands. Geoderma, 2016, 272, 20-31.	2.3	59
95	Simulation of soil thickness evolution in a complex agricultural landscape at fine spatial and temporal scales. Geoderma, 2006, 133, 71-86.	2.3	58
96	A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis. Water Resources Research, 2015, 51, 8757-8772.	1.7	58
97	Using R for Digital Soil Mapping. Progress in Soil Science, 2017, , .	0.4	58
98	Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sensing, 2019, 11, 1666.	1.8	58
99	Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation. Geoderma, 2011, 163, 150-162.	2.3	57
100	Integral energy as a measure of soil-water availability. Plant and Soil, 2003, 249, 253-262.	1.8	55
101	Drainage increases CO ₂ and N ₂ O emissions from tropical peat soils. Global Change Biology, 2020, 26, 4583-4600.	4.2	55
102	Predicting and mapping soil available water capacity in Korea. PeerJ, 2013, 1, e71.	0.9	54
103	Estimating the Water Retention Shape Parameter from Sand and Clay Content. Soil Science Society of America Journal, 2007, 71, 1105-1110.	1.2	53
104	Modelling longâ€ŧerm <i>in situ </i> soil profile evolution: application to the genesis of soil profiles containing stone layers. European Journal of Soil Science, 2007, 58, 1535-1548.	1.8	53
105	Soil slaking assessment using image recognition. Soil and Tillage Research, 2016, 163, 119-129.	2.6	53
106	Global soil science research collaboration in the 21st century: Time to end helicopter research. Geoderma, 2020, 373, 114299.	2.3	53
107	Citations and the <i>h</i> index of soil researchers and journals in the Web of Science, Scopus, and Google Scholar. PeerJ, 2013, 1, e183.	0.9	53
108	Modelling how carbon affects soil structure. Geoderma, 2009, 149, 19-26.	2.3	52

#	Article	IF	CITATIONS
109	Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia. Geoderma Regional, 2015, 6, 7-21.	0.9	52
110	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	6.6	52
111	The efficiency of various approaches to obtaining estimates of soil hydraulic properties. Geoderma, 2002, 107, 55-70.	2.3	48
112	Estimating soil hydraulic properties and their uncertainty: the use of stochastic simulation in the inverse modelling of the evaporation method. Geoderma, 2005, 126, 277-290.	2.3	48
113	Is soil carbon disappearing? The dynamics of soil organic carbon in Java. Global Change Biology, 2011, 17, 1917-1924.	4.2	48
114	Some practical aspects of predicting texture data in digital soil mapping. Soil and Tillage Research, 2019, 194, 104289.	2.6	48
115	The <i>Neuroâ€m</i> Method for Fitting Neural Network Parametric Pedotransfer Functions. Soil Science Society of America Journal, 2002, 66, 352-361.	1.2	47
116	Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter. Geoderma, 2017, 285, 76-93.	2.3	47
117	Evaluating a Bayesian modelling approach (INLA-SPDE) for environmental mapping. Science of the Total Environment, 2017, 609, 621-632.	3.9	46
118	Crops for increasing soil organic carbon stocks – A global meta analysis. Geoderma, 2020, 367, 114230.	2.3	45
119	Digital soil property mapping and uncertainty estimation using soil class probability rasters. Geoderma, 2015, 237-238, 190-198.	2.3	44
120	Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30Âyears. Global Biogeochemical Cycles, 2012, 26, .	1.9	43
121	Rapid assessment of petroleum-contaminated soils with infrared spectroscopy. Geoderma, 2017, 289, 150-160.	2.3	43
122	Addressing the issue of digital mapping of soil classes with imbalanced class observations. Geoderma, 2019, 350, 84-92.	2.3	43
123	Merging country, continental and global predictions of soil texture: Lessons from ensemble modelling in France. Geoderma, 2019, 337, 99-110.	2.3	43
124	Digital Mapping of Soil Classes Using Decision Tree and Auxiliary Data in the Ardakan Region, Iran. Arid Land Research and Management, 2014, 28, 147-168.	0.6	42
125	Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 2013, 192, 77-85.	2.3	41
126	Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma, 2020, 360, 114033.	2.3	41

#	Article	IF	CITATIONS
127	Legacy data-based national-scale digital mapping of key soil properties in India. Geoderma, 2021, 381, 114684.	2.3	41
128	Uncertainty analysis for soilâ€ŧerrain models. International Journal of Geographical Information Science, 2006, 20, 117-134.	2.2	40
129	A general method for downscaling earth resource information. Computers and Geosciences, 2012, 41, 119-125.	2.0	40
130	Estimation of sorptivity from disc-permeameter measurements. Geoderma, 2000, 95, 305-324.	2.3	39
131	Evaluating near infrared spectroscopy for field prediction of soil properties. Soil Research, 2009, 47, 664.	0.6	39
132	Bottom-up digital soil mapping. I. Soil layer classes. Geoderma, 2011, 163, 38-44.	2.3	39
133	Spatial Scaling for Digital Soil Mapping. Soil Science Society of America Journal, 2013, 77, 890-902.	1.2	39
134	Volcanic Ash, Insecurity for the People but Securing Fertile Soil for the Future. Sustainability, 2019, 11, 3072.	1.6	39
135	Evaluating low-cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia. Geoderma Regional, 2020, 20, e00240.	0.9	39
136	Necessary meta-data for pedotransfer functions. Geoderma, 2011, 160, 627-629.	2.3	38
137	Operational sampling challenges to digital soil mapping in Tasmania, Australia. Geoderma Regional, 2015, 4, 1-10.	0.9	38
138	Quantifying and predicting spatio-temporal variability of soil CH 4 and N 2 O fluxes from a seemingly homogeneous Australian agricultural field. Agriculture, Ecosystems and Environment, 2017, 240, 182-193.	2.5	38
139	Elucidation of physiographic and hydrogeological features of the lower Namoi valley using fuzzy k-means classification of EM34 data. Environmental Modelling and Software, 2003, 18, 667-680.	1.9	37
140	Evaluating a low ost portable <scp>NIR</scp> spectrometer for the prediction of soil organic and total carbon using different calibration models. Soil Use and Management, 2019, 35, 607-616.	2.6	37
141	Soil carbon determination by thermogravimetrics. PeerJ, 2013, 1, e6.	0.9	37
142	Predicting soil properties in 3D: Should depth be a covariate?. Geoderma, 2021, 383, 114794.	2.3	36
143	A description of aggregate liberation and dispersion in A horizons of Australian Vertisols by ultrasonic agitation. Geoderma, 1999, 91, 11-26.	2.3	35
144	Spatial evaluation of pedotransfer functions using wavelet analysis. Journal of Hydrology, 2007, 333, 182-198.	2.3	35

#	Article	IF	CITATIONS
145	Evaluating the spatial and vertical distribution of agriculturally important nutrients — nitrogen, phosphorous and boron — in North West Iran. Catena, 2019, 173, 71-82.	2.2	35
146	Mid-infrared spectroscopy for accurate measurement of an extensive set of soil properties for assessing soil functions. Soil Security, 2022, 6, 100043.	1.2	35
147	Understanding the process of fascial unwinding. International Journal of Therapeutic Massage & Bodywork, 2009, 2, 10-7.	0.1	34
148	Long-term variability of the leading seasonal modes of rainfall in south-eastern Australia. Weather and Climate Extremes, 2016, 13, 1-14.	1.6	34
149	Rejoinder to Comments on Minasny et al., 2017 Soil carbon 4 per mille Geoderma 292, 59–86. Geoderma, 2018, 309, 124-129.	2.3	34
150	In search of an optimum sampling algorithm for prediction of soil properties from infrared spectra. PeerJ, 2018, 6, e5722.	0.9	34
151	Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia. Soil Research, 2015, 53, 932.	0.6	33
152	Improved disaggregation of conventional soil maps. Geoderma, 2019, 341, 148-160.	2.3	33
153	A Framework for the Development of Wetland for Agricultural Use in Indonesia. Resources, 2019, 8, 34.	1.6	33
154	Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling. Computers and Electronics in Agriculture, 2019, 158, 201-210.	3.7	33
155	Digital Mapping of Soil Classes Using Ensemble of Models in Isfahan Region, Iran. Soil Systems, 2019, 3, 37.	1.0	32
156	Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf tissues. Advances in Agronomy, 2020, , 1-49.	2.4	32
157	Land-use affects soil microbial co-occurrence networks and their putative functions. Applied Soil Ecology, 2022, 169, 104184.	2.1	32
158	Bottom-up digital soil mapping. II. Soil series classes. Geoderma, 2011, 163, 30-37.	2.3	31
159	An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management. Precision Agriculture, 2013, 14, 376-391.	3.1	31
160	Predicting and mapping the soil available water capacity of Australian wheatbelt. Geoderma Regional, 2014, 2-3, 110-118.	0.9	31
161	The location- and scale- specific correlation between temperature and soil carbon sequestration across the globe. Science of the Total Environment, 2018, 615, 540-548.	3.9	31
162	Neural Networks Prediction of Soil Hydraulic Functions for Alluvial Soils Using Multistep Outflow Data. Soil Science Society of America Journal, 2004, 68, 417.	1.2	31

#	Article	IF	CITATIONS
163	Homosoil, a Methodology for Quantitative Extrapolation of Soil Information Across the Globe. , 2010, , 137-150.		30
164	Digital soil property mapping and uncertainty estimation using soil class probability rasters. , 2014, , 341-346.		30
165	Modelling aggregate liberation and dispersion of three soil types exposed to ultrasonic agitation. Soil Research, 2006, 44, 497.	0.6	29
166	Estimating Pedotransfer Function Prediction Limits Using Fuzzy <i>k</i> â€Means with Extragrades. Soil Science Society of America Journal, 2010, 74, 1967-1975.	1.2	29
167	Applicability of Richards' equation models to predict deep percolation under surface irrigation. Geoderma, 2011, 160, 569-578.	2.3	29
168	Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Regional, 2021, 24, e00359.	0.9	29
169	The GlobalSoilMap project specifications. , 2014, , 9-12.		29
170	Measurement of aggregate bond energy using ultrasonic dispersion. European Journal of Soil Science, 2009, 60, 695-705.	1.8	28
171	Methodologies for Global Soil Mapping. , 2010, , 429-436.		28
172	A model for the identification of terrons in the Lower Hunter Valley, Australia. Geoderma Regional, 2014, 1, 31-47.	0.9	28
173	Challenges for Soil Organic Carbon Research. , 2014, , 3-16.		28
174	Using distance metrics to determine the appropriate domain of pedotransfer function predictions. Geoderma, 2009, 149, 421-425.	2.3	27
175	Mapping and comparing the distribution of soil carbon under cropping and grazing management practices in Narrabri, north-west New South Wales. Soil Research, 2010, 48, 248.	0.6	27
176	Digital mapping of a soil drainage index for irrigated enterprise suitability in Tasmania, Australia. Soil Research, 2014, 52, 107.	0.6	27
177	Trends in soil science education: Looking beyond the number of students. Journal of Soils and Water Conservation, 2008, 63, 76A-83A.	0.8	26
178	Comparisons between USDA Soil Taxonomy and the Australian Soil Classification System I: Data harmonization, calculation of taxonomic distance and inter-taxa variation. Geoderma, 2017, 307, 198-209.	2.3	26
179	Developing a soil spectral library using a low-cost NIR spectrometer for precision fertilization in Indonesia. Geoderma Regional, 2020, 22, e00319.	0.9	26
180	Soil science and the h index. Scientometrics, 2007, 73, 257-264.	1.6	25

#	Article	IF	CITATIONS
181	A geostatistical analysis of geostatistics. Scientometrics, 2009, 80, 491-514.	1.6	25
182	Pedometrics Research in the Vadose Zone—Review and Perspectives. Vadose Zone Journal, 2013, 12, 1-20.	1.3	25
183	Quantifying processes of pedogenesis using optically stimulated luminescence. European Journal of Soil Science, 2013, 64, 145-160.	1.8	25
184	Mapping imbalanced soil classes using Markov chain random fields models treated with data resampling technique. Computers and Electronics in Agriculture, 2019, 159, 110-118.	3.7	25
185	To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library. Geoderma, 2022, 406, 115501.	2.3	25
186	Comparing Spectral Soil Inference Systems and Midâ€Infrared Spectroscopic Predictions of Soil Moisture Retention. Soil Science Society of America Journal, 2008, 72, 1394-1400.	1.2	24
187	Advances in Agronomy Quantifying Processes of Pedogenesis. Advances in Agronomy, 2011, 113, 1-74.	2.4	24
188	The feasibility of predicting the spatial pattern of soil particle-size distribution using a pedogenesis model. Geoderma, 2019, 341, 195-205.	2.3	24
189	Simple functions for describing soil water retention and the unsaturated hydraulic conductivity from saturation to complete dryness. Journal of Hydrology, 2020, 588, 125041.	2.3	24
190	Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability, 2022, 14, 5815.	1.6	24
191	Using Additional Criteria for Measuring the Quality of Predictions and Their Uncertainties in a Digital Soil Mapping Framework. Soil Science Society of America Journal, 2011, 75, 1032-1043.	1.2	23
192	Unravelling scale- and location-specific variations in soil properties using the 2-dimensional empirical mode decomposition. Geoderma, 2017, 307, 139-149.	2.3	23
193	Spatial changes in soil chemical properties in an agricultural zone in southeastern China due to land consolidation. Soil and Tillage Research, 2019, 187, 152-160.	2.6	23
194	Human-induced changes in Indonesian peatlands increase drought severity. Environmental Research Letters, 2020, 15, 084013.	2.2	23
195	Precocious 19th century soil carbon science. Geoderma Regional, 2020, 22, e00306.	0.9	23
196	Individual, country, and journal self-citation in soil science. Geoderma, 2010, 155, 434-438.	2.3	22
197	Spatial variability of Australian soil texture: A multiscale analysis. Geoderma, 2018, 309, 60-74.	2.3	22
198	Modeling Soil Salinity along a Hillslope in Iran by Inversion of EM38 Data. Soil Science Society of America Journal, 2015, 79, 1142-1153.	1.2	21

#	Article	IF	CITATIONS
199	Two-dimensional empirical mode decomposition of heavy metal spatial variation in agricultural soils, Southeast China. Environmental Science and Pollution Research, 2017, 24, 8302-8314.	2.7	21
200	Operationalising digital soil mapping – Lessons from Australia. Geoderma Regional, 2020, 23, e00335.	0.9	21
201	High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine. Remote Sensing, 2022, 14, 1875.	1.8	21
202	Comment on "Determining soil carbon stock changes: Simple bulk density corrections fail―[Agric. Ecosyst. Environ. 134 (2009) 251–256]. Agriculture, Ecosystems and Environment, 2010, 136, 185-186.	2.5	20
203	The Role of Knowledge When Studying Innovation and the Associated Wicked Sustainability Problems in Agriculture. Advances in Agronomy, 2011, 113, 293-323.	2.4	20
204	Optimized multi-phase sampling for soil remediation surveys. Spatial Statistics, 2013, 4, 1-13.	0.9	20
205	Optimizing Stratification and Allocation for Design-Based Estimation of Spatial Means Using Predictions with Error. Journal of Survey Statistics and Methodology, 2015, 3, 19-42.	0.5	20
206	Accounting for the measurement error of spectroscopically inferred soil carbon data for improved precision of spatial predictions. Science of the Total Environment, 2018, 631-632, 377-389.	3.9	19
207	Soil temperature increase in eastern Australia for the past 50 years. Geoderma, 2018, 313, 241-249.	2.3	19
208	Landscape-scale exploratory radiometric mapping using proximal soil sensing. Geoderma, 2015, 239-240, 115-129.	2.3	18
209	Measuring and Modelling Soil Depth Functions. Progress in Soil Science, 2016, , 225-240.	0.4	18
210	Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm. Precision Agriculture, 2011, 12, 421-438.	3.1	17
211	End members, end points and extragrades in numerical soil classification. Geoderma, 2014, 226-227, 365-375.	2.3	17
212	Retrospective monitoring of the spatial variability of crystalline iron in soils of the east shore of Urmia Lake, Iran using remotely sensed data and digital maps. Geoderma, 2019, 337, 1196-1207.	2.3	17
213	The hydrology of Vertosols used for cotton production: I. Hydraulic, structural and fundamental soil properties. Soil Research, 2003, 41, 1255.	0.6	16
214	Nonlinear mixed effect modelling for improved estimation of water retention and infiltration parameters. Journal of Hydrology, 2006, 330, 748-758.	2.3	16
215	Further results on comparison of methods for quantifying soil carbon in tropical peats. Geoderma, 2016, 269, 108-111.	2.3	16
216	Rapid and cost-effective nutrient content analysis of cotton leaves using near-infrared spectroscopy (NIRS). PeerJ, 2021, 9, e11042.	0.9	16

#	Article	IF	CITATIONS
217	GlobalSoilMap.net – A New Digital Soil Map of the World. , 2010, , 423-428.		16
218	Measuring functional pedodiversity using spectroscopic information. Catena, 2017, 152, 103-114.	2.2	16
219	Using Vis-NIR Spectroscopy for Monitoring Temporal Changes in Soil Organic Carbon. Soil Science, 2013, 178, 389-399.	0.9	15
220	Taking account of uncertainties in digital land suitability assessment. PeerJ, 2015, 3, e1366.	0.9	15
221	Monitoring and Modeling Soil Change: The Influence of Human Activity and Climatic Shifts on Aspects of Soil Spatiotemporally. Advances in Agronomy, 2016, 139, 153-214.	2.4	15
222	Comparison of regression methods for spatial downscaling of soil organic carbon stocks maps. Computers and Electronics in Agriculture, 2017, 142, 91-100.	3.7	15
223	Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal. Applied Soil Ecology, 2018, 122, 271-296.	2.1	15
224	Near infrared diffuse reflectance spectroscopy for rapid and comprehensive soil condition assessment in smallholder cacao farming systems of Papua New Guinea. Catena, 2019, 183, 104185.	2.2	15
225	Density of soil observations in digital soil mapping: A study in the Mayenne region, France. Geoderma Regional, 2021, 24, e00358.	0.9	15
226	Pedotransfer functions for estimating soil hydraulic properties from saturation to dryness. Geoderma, 2021, 403, 115194.	2.3	15
227	An improved drought-fire assessment for managing fire risks in tropical peatlands. Agricultural and Forest Meteorology, 2022, 312, 108738.	1.9	15
228	A wellâ€established fact: Rapid mineralization of organic inputs is an important factor for soil carbon sequestration. European Journal of Soil Science, 2022, 73, .	1.8	15
229	Chapter 12 Latin Hypercube Sampling as a Tool for Digital Soil Mapping. Developments in Soil Science, 2006, 31, 153-606.	0.5	14
230	The Effect of Soil Moisture and Texture on Fe Concentration Using Portable X-Ray Fluorescence Spectrometers. Progress in Soil Science, 2016, , 63-71.	0.4	14
231	Spatiotemporal monthly rainfall forecasts for south-eastern and eastern Australia using climatic indices. Theoretical and Applied Climatology, 2016, 124, 1045-1063.	1.3	14
232	Geochemical fingerprinting of volcanic soils used for wetland rice in West Sumatra, Indonesia. Geoderma Regional, 2017, 10, 48-63.	0.9	14
233	Combining ancillary soil data with VisNIR spectra to improve predictions of organic and inorganic carbon content of soils. MethodsX, 2018, 5, 551-560.	0.7	14
234	Prediction of total silicon concentrations in French soils using pedotransfer functions from mid-infrared spectrum and pedological attributes. Geoderma, 2018, 331, 70-80.	2.3	14

#	Article	IF	CITATIONS
235	Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE. Geoderma, 2021, 384, 114808.	2.3	14
236	Frameworks for digital soil assessment. , 2012, , 9-14.		14
237	A protocol for converting qualitative point soil pit survey data into continuous soil property maps. Soil Research, 2006, 44, 543.	0.6	13
238	Adapting technology for measuring soil aggregate dispersive energy using ultrasonic dispersion. Biosystems Engineering, 2009, 104, 258-265.	1.9	13
239	Spacebender. Spatial Statistics, 2013, 4, 57-67.	0.9	13
240	Temperature-dependent hysteresis effects on EM induction instruments: An example of single-frequency multi-coil array instruments. Computers and Electronics in Agriculture, 2017, 132, 76-85.	3.7	13
241	The role of atmospheric correction algorithms in the prediction of soil organic carbon from Hyperion data. International Journal of Remote Sensing, 2017, 38, 6435-6456.	1.3	13
242	Conditioned Latin Hypercube Sampling for Calibrating Soil Sensor Data to Soil Properties. , 2010, , 111-119.		13
243	Comparing three approaches of spatial disaggregation of legacy soil maps based on the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm. Soil, 2020, 6, 371-388.	2.2	13
244	Digital mapping of potentially toxic elements enrichment in soils of Urmia Lake due to water level decline. Science of the Total Environment, 2022, 808, 152086.	3.9	13
245	Current NPP cannot predict future soil organic carbon sequestration potential. Comment on "Photosynthetic limits on carbon sequestration in croplands― Geoderma, 2022, 424, 115975.	2.3	13
246	Relationships between field texture and particle-size distribution in Australia and their implications. Soil Research, 2007, 45, 428.	0.6	12
247	Generation of kth-order random toposequences. Computers and Geosciences, 2008, 34, 479-490.	2.0	12
248	Using genetic programming to transform from Australian to USDA/FAO soil particle-size classification system. Soil Research, 2012, 50, 443.	0.6	12
249	Utilizing a <scp>DUALEM</scp> â€421 and inversion modelling to map baseline soil salinity along toposequences in the Hunter Valley Wine district. Soil Use and Management, 2017, 33, 413-424.	2.6	12
250	Using ultrasonic energy to elucidate the effects of decomposing plant residues on soil aggregation. Soil and Tillage Research, 2017, 167, 1-8.	2.6	12
251	Comparisons between USDA soil taxonomy and the Australian Soil Classification system II: Comparison of order, suborder and great group taxa. Geoderma, 2018, 322, 48-55.	2.3	12
252	Digital Mapping of Soil Classes and Continuous Soil Properties. Progress in Soil Science, 2018, , 373-413.	0.4	12

#	Article	IF	CITATIONS
253	Mapping soil pH and bulk density at multiple soil depths in Denmark. , 2014, , 155-160.		12
254	Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. Catena, 2022, 213, 106155.	2.2	12
255	The hydrology of Vertosols used for cotton production: II. Pedotransfer functions to predict hydraulic properties. Soil Research, 2006, 44, 479.	0.6	11
256	Evaluation of a local regression kriging approach for mapping apparent electrical conductivity of soil (ECa) at high resolution. Journal of Plant Nutrition and Soil Science, 2012, 175, 212-220.	1.1	11
257	A mechanistic model to predict soil thickness in a valley area of Rio Grande do Sul, Brazil. Geoderma, 2018, 309, 17-31.	2.3	11
258	Spatial analysis of frost risk to determine viticulture suitability in Tasmania, Australia. Australian Journal of Grape and Wine Research, 2018, 24, 219-233.	1.0	11
259	Greater, but not necessarily better: The influence of biochar on soil hydraulic properties. European Journal of Soil Science, 2021, 72, 2033-2048.	1.8	11
260	Applying volcanic ash to croplands – The untapped natural solution. Soil Security, 2021, 3, 100006.	1.2	11
261	A modelling framework for pedogenon mapping. Geoderma, 2021, 393, 115012.	2.3	11
262	Digital Soil Mapping Technologies for Countries with Sparse Data Infrastructures. , 2008, , 15-30.		11
263	The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication. Remote Sensing, 2022, 14, 740.	1.8	11
264	Measuring and modelling the actual energy involved in aggregate breakdown. Catena, 2010, 82, 53-60.	2.2	10
265	3D soil water nowcasting using electromagnetic conductivity imaging and the ensemble Kalman filter. Journal of Hydrology, 2017, 549, 62-78.	2.3	10
266	Creating a novel comprehensive soil classification system by sequentially adding taxa from existing systems. Geoderma Regional, 2017, 11, 123-140.	0.9	10
267	Rejoinder to the comment on: B. Minasny & A.B. McBratney. 2018. Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 2018, 69, 155-157.	1.8	10
268	Spatial distribution of iron forms and features in the dried lake bed of Urmia Lake of Iran. Geoderma Regional, 2020, 21, e00275.	0.9	10
269	Soil bacterial depth distribution controlled by soil orders and soil forms. Soil Ecology Letters, 2022, 4, 57-68.	2.4	10
270	Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia. PeerJ, 2018, 6, e4659.	0.9	10

#	Article	IF	CITATIONS
271	Comments on "Simultaneous Measurement of Soil Penetration Resistance and Water Content with a Combined Penetrometer–TDR Moisture Probe―and "A Dynamic Cone Penetrometer for Measuring Soil Penetration Resistance― Soil Science Society of America Journal, 2005, 69, 925-926.	1.2	9
272	A preliminary soil security assessment of agricultural land in middleâ€eastern China. Soil Use and Management, 2018, 34, 584-596.	2.6	9
273	Automated soil particleâ€size analysis using time of flight distance ranging sensor. Soil Science Society of America Journal, 2020, 84, 690-699.	1.2	9
274	A framework to assess changes in soil condition and capability over large areas. Soil Security, 2021, 4, 100011.	1.2	9
275	Contrasting soil penetration resistance values acquired from dynamic and motor-operated penetrometers. Geoderma, 2012, 177-178, 57-62.	2.3	8
276	Mapping soil water retention curves via spatial Bayesian hierarchical models. Journal of Hydrology, 2015, 524, 768-779.	2.3	8
277	Application of response surface methodology for optimization of wheat flour milling process. Cereal Chemistry, 2021, 98, 1215-1226.	1.1	8
278	Solute adsorption and transport parameters. Developments in Soil Science, 2004, 30, 195-224.	0.5	7
279	Chapter 21 Soil Prediction with Spatially Decomposed Environmental Factors. Developments in Soil Science, 2006, 31, 269-278.	0.5	7
280	A Combined Frequency Domain and Tensiometer Sensor for Determining Soil Water Characteristic Curves. Soil Science Society of America Journal, 2010, 74, 492-494.	1.2	7
281	A nomenclature algorithm for a potentially global soil taxonomy. Geoderma, 2018, 322, 56-70.	2.3	7
282	Soil apparent electrical conductivityâ€directed sampling design for advancing soil characterization in agricultural fields. Vadose Zone Journal, 2020, 19, e20060.	1.3	7
283	Mapping a Profile Wall of a Typic Udipsamments from the Central Sands in Wisconsin, USA. Progress in Soil Science, 2016, , 191-206.	0.4	6
284	Digital Soil Mapping. Progress in Soil Science, 2017, , 1-5.	0.4	6
285	Pedotransfer Functions and Soil Inference Systems. Progress in Soil Science, 2018, , 195-220.	0.4	6
286	Online machine learning for collaborative biophysical modelling. Environmental Modelling and Software, 2019, 122, 104548.	1.9	6
287	A review of the world's soil museums and exhibitions. Advances in Agronomy, 2021, 166, 277-304.	2.4	6
288	Disaggregating a regional-extent digital soil map using Bayesian area-to-point regression kriging for farm-scale soil carbon assessment. Soil, 2020, 6, 359-369.	2.2	6

#	Article	IF	CITATIONS
289	The role of soil carbon sequestration in enhancing human resilience in tackling global crises including pandemics. Soil Security, 2022, 8, 100069.	1.2	6
290	Soil inference systems. Developments in Soil Science, 2004, 30, 323-348.	0.5	5
291	Some Methods for the Quantification of Prediction Uncertainties for Digital Soil Mapping. Progress in Soil Science, 2017, , 169-219.	0.4	5
292	Auditing on-farm soil carbon stocks using downscaled national mapping products: Examples from Australia and New Zealand. Geoderma Regional, 2018, 13, 1-14.	0.9	5
293	History and interpretation of early soil and organic matter investigations in Deli, Sumatra, Indonesia. Catena, 2020, 195, 104909.	2.2	5
294	Creating a soil parent material map digitally using a combination of interpretation and statistical techniques. Soil Research, 2021, 59, 684-698.	0.6	5
295	Identifying soil provenance based on portable X-ray fluorescence measurements using similarity and inverse-mapping approaches – A case in the Lower Hunter Valley, Australia. Geoderma Regional, 2021, 25, e00368.	0.9	5
296	Sorptivity of Soils. Encyclopedia of Earth Sciences Series, 2011, , 824-826.	0.1	5
297	THE GLOBALSOILMAP PROJECT: PAST, PRESENT, FUTURE, AND NATIONAL EXAMPLES FROM FRANCE. Dokuchaev Soil Bulletin, 2018, , 3-23.	0.1	5
298	Hundred fifty years of soil security research in Indonesia: Shifting topics, modes of research and gender balance. Soil Security, 2022, 6, 100049.	1.2	5
299	Free iron oxide content in tropical soils predicted by integrative digital mapping. Soil and Tillage Research, 2022, 219, 105346.	2.6	5
300	Using homosoils for quantitative extrapolation of soil mapping models. European Journal of Soil Science, 2022, 73, .	1.8	5
301	Hand-feel soil texture observations to evaluate the accuracy of digital soil maps for local prediction of soil particle size distribution: A case study in Central France. Pedosphere, 2023, 33, 731-743.	2.1	5
302	Reply to "Comment on "Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review―by Horta et al― Geoderma, 2016, 271, 256-257.	2.3	4
303	The history of using rainfall data to improve production in the grain industry in Australia—from Goyder to ENSO. Crop and Pasture Science, 2016, 67, 467.	0.7	4
304	Variograms of Soil Properties for Agricultural and Environmental Applications. Progress in Soil Science, 2018, , 623-667.	0.4	4
305	Geochemical Characterization and Evolution of Soils from Krakatau Islands. Eurasian Soil Science, 2021, 54, 1629-1643.	0.5	4
306	Soil Sensing. Progress in Precision Agriculture, 2021, , 93-132.	1.1	4

#	Article	IF	CITATIONS
307	The Increasing Role of Indonesian Women in Soil Science: Current & Future Challenges. Soil Security, 2022, , 100050.	1.2	4
308	Groundwater table and soil-hydrological properties datasets of Indonesian peatlands. Data in Brief, 2022, 41, 107903.	0.5	4
309	Digital Soil Mapping in a changing world. , 2012, , 301-305.		3
310	Carbon Determination System for Whole Soil Cores. Communications in Soil Science and Plant Analysis, 2015, 46, 221-234.	0.6	3
311	Categorical Soil Attribute Modeling and Mapping. Progress in Soil Science, 2017, , 151-167.	0.4	3
312	Near real-time mapping of air temperature at high spatiotemporal resolutions in Tasmania, Australia. Theoretical and Applied Climatology, 2020, 141, 1181-1201.	1.3	3
313	Changes in Anak Krakatau landscape after December 2018 eruption. IOP Conference Series: Earth and Environmental Science, 2021, 708, 012088.	0.2	3
314	Evaluating the Splintex model for estimating the soil water retention curve for a wide range of soils. Soil and Tillage Research, 2021, 209, 104974.	2.6	3
315	The Sun Has Shone Here Antecedently. , 2010, , 67-75.		3
316	Digital soil assessment. , 2012, , 3-8.		3
317	Soil profile organic carbon prediction with visible-near infrared reflectance spectroscopy based on a national database. , 2012, , 409-413.		3
318	Spatial Pedological Mapping Using a Portable X-Ray Fluorescence Spectrometer at the Tallavera Grove Vineyard, Hunter Valley. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2016, 49, 635-643.	0.1	3
319	Cocoa suitability mapping using multi-criteria decision making: An agile step towards soil security. Soil Security, 2021, 5, 100019.	1.2	3
320	Comments on "Modeling Energy Inputs to Predict Pedogenic Environments Using Regional Environmental Databases― Soil Science Society of America Journal, 2008, 72, 858-859.	1.2	2
321	Pedometrics. , 2014, , .		2
322	Digital Soil Assessments. Progress in Soil Science, 2017, , 245-260.	0.4	2
323	Classical Soil Geostatistics. Progress in Soil Science, 2018, , 291-340.	0.4	2
324	Clorpt Functions. Progress in Soil Science, 2018, , 549-554.	0.4	2

#	Article	IF	CITATIONS
325	Measuring soil bulk density from shear wave velocity using piezoelectric sensors. Soil Research, 2021, 59, 107.	0.6	2
326	Geochemical and mineralogical composition of the 2018 volcanic deposits of Mt. Anak Krakatau. Geoderma Regional, 2021, 25, e00393.	0.9	2
327	Paper self-citation rates of leading soil science journals. Catena, 2021, 202, 105232.	2.2	2
328	Quantitatively Predicting Soil Carbon Across Landscapes. , 2014, , 45-57.		2
329	Operational digital soil assessment for enterprise suitability in Tasmania, Australia. , 2014, , 113-119.		2
330	Modeling Air Temperature Inside an Organic Vegetable Greenhouse. Agrivita, 2020, 42, .	0.2	2
331	Digital Soil Morphometrics. , 2023, , 568-578.		2
332	Modeling soil development in a landscape context. , 2021, , .		2
333	Comparison of flour mill stream blending approaches: Linear programming versus ash curve. Cereal Chemistry, 2022, 99, 568-581.	1.1	2
334	Coolie Legend on the Deli Plantation. Bijdragen Tot De Taal-, Land- En Volkenkunde, 2022, 178, 159-191.	0.3	2
335	Soil-landscape models to predict soil pH variation in the Subang region of West Java, Indonesia. , 2012, , 317-323.		1
336	Continuous Soil Attribute Modeling and Mapping. Progress in Soil Science, 2017, , 117-149.	0.4	1
337	One-, Two- and Three-Dimensional Pedogenetic Models. Progress in Soil Science, 2018, , 555-593.	0.4	1
338	Statistical Distributions of Soil Properties. Progress in Soil Science, 2018, , 59-86.	0.4	1
339	Farm-Scale Soil Carbon Auditing. Progress in Soil Science, 2018, , 693-720.	0.4	1
340	Peat Physical and Hydraulic Properties Due to Peatland Fires. IOP Conference Series: Earth and Environmental Science, 2020, 504, 012020.	0.2	1
341	Sampling for field measurement of soil carbon using Vis-NIR spectroscopy. , 2012, , 415-420.		1
342	Digital soil mapping of soil properties for Korean soils. , 2012, , 435-438.		1

#	Article	IF	CITATIONS
343	Progress towards GlobalSoilMap.net soil database of Denmark. , 2012, , 445-451.		1
344	Mapping the available water capacity of Australian soils. , 2014, , 173-179.		1
345	Integrating climate into the Digital Soil Assessment framework to assess land suitability. , 2014, , 393-399.		1
346	Predicting Organic Matter content in Korean Soils Using Regression rules on Visible-Near Infrared Diffuse Reflectance Spectra. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2012, 45, 497-502.	0.1	1
347	High resolution 3D mapping for soil organic carbon assessment in a rural landscape. , 2012, , 341-345.		1
348	Open digital mapping for accurate assessment of tropical peatlands. , 2019, , 3-8.		1
349	Exploratory Soil Spectral Analysis. Progress in Soil Science, 2021, , 81-113.	0.4	1
350	Sustaining the productivity and ecosystem services of soils in Indonesia. Geoderma Regional, 2022, 28, e00488.	0.9	1
351	Development of aÂcrop water use monitoring systemÂusingÂelectromagnetic induction survey. Soil and Tillage Research, 2022, 223, 105451.	2.6	1
352	A Novel Method for Measurement of Carbon on Whole Soil Cores. , 2014, , 69-76.		0
353	Developments in Digital Soil Morphometrics. Progress in Soil Science, 2016, , 425-433.	0.4	0
354	R Literacy for Digital Soil Mapping. Progress in Soil Science, 2017, , 7-79.	0.4	0
355	Combining Continuous and Categorical Modeling: Digital Soil Mapping of Soil Horizons and Their Depths. Progress in Soil Science, 2017, , 231-244.	0.4	0
356	Editorial for Special Issue "Digital Mapping in Dynamic Environments― Remote Sensing, 2020, 12, 3384.	1.8	0
357	Response to comments on "global soil science research collaboration in the 21st Century: Time to end helicopter research― Geoderma, 2020, 373, 114303.	2.3	0
358	Evaluating an adaptive sampling algorithm to assist soil survey in New South Wales, Australia. Geoderma Regional, 2020, 21, e00284.	0.9	0
359	Estimating Soil Properties and Classes from Spectra. Progress in Soil Science, 2021, , 165-214.	0.4	0
360	Selection of the Samples for Laboratory Analysis. Progress in Soil Science, 2021, , 143-164.	0.4	0

#	Article	IF	CITATIONS
361	Spectral Transfer and Transformation. Progress in Soil Science, 2021, , 215-247.	0.4	0
362	Spectral information related to soil slaking: An example from Australia. Geoderma Regional, 2021, 25, e00386.	0.9	0
363	Some methods regarding manipulations of scale for digital soil mapping. , 2012, , 135-138.		0
364	The role of soil inference systems in digital soil assessments. , 2012, , 281-285.		0
365	Organic matter prediction for Korean soils using visible-near infrared reflectance spectroscopy. , 2012, , 377-380.		0
366	A quantitative model for integrating landscape evolution and soil formation. Journal of Geophysical Research F: Earth Surface, 2013, , n/a-n/a.	1.0	0
367	Predicting Soil Chemical Properties with Regression Rules from Visible-near Infrared Reflectance Spectroscopy. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2014, 47, 319-323.	0.1	0