
Graeme Hammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2960262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic control of leaf angle in sorghum and its effect on light interception. Journal of Experimental Botany, 2022, 73, 801-816.	4.8	10
2	Quantifying the effects of varietal typesÂ×Âmanagement on the spatial variability of sorghum biomass across US environments. GCB Bioenergy, 2022, 14, 411-433.	5.6	9
3	Estimating Photosynthetic Attributes from High-Throughput Canopy Hyperspectral Sensing in Sorghum. Plant Phenomics, 2022, 2022, 9768502.	5.9	7
4	Sustained improvement in tolerance to water deficit accompanies maize yield increase in temperate environments. Crop Science, 2022, 62, 2138-2150.	1.8	18
5	Radiation use efficiency increased over a century of maize (<i>Zea mays</i> L.) breeding in the US corn belt. Journal of Experimental Botany, 2022, 73, 5503-5513.	4.8	21
6	Physiological trait networks enhance understanding of crop growth and water use in contrasting environments. Plant, Cell and Environment, 2022, 45, 2554-2572.	5.7	5
7	Limiting transpiration rate in high evaporative demand conditions to improve Australian wheat productivity. In Silico Plants, 2021, 3, .	1.9	19
8	Dissecting and modelling the comparative adaptation to water limitation of sorghum and maize: role of transpiration efficiency, transpiration rate and height. In Silico Plants, 2021, 3, .	1.9	11
9	Integrating crop growth models with remote sensing for predicting biomass yield of sorghum. In Silico Plants, 2021, 3, .	1.9	18
10	Sorghum. , 2021, , 196-221.		9
11	Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for cro improvement by predicting contributions of genetics and management to crop productivity. Theoretical and Applied Genetics, 2021, 134, 1625-1644.	р 3.6	53
12	Reproductive resilience but not root architecture underpins yield improvement under drought in maize. Journal of Experimental Botany, 2021, 72, 5235-5245.	4.8	31
13	In pursuit of a better world: crop improvement and the CGIAR. Journal of Experimental Botany, 2021, 72, 5158-5179.	4.8	35
14	Addressing Research Bottlenecks to Crop Productivity. Trends in Plant Science, 2021, 26, 607-630.	8.8	76
15	Perspectives on Applications of Hierarchical Gene-To-Phenotype (G2P) Maps to Capture Non-stationary Effects of Alleles in Genomic Prediction. Frontiers in Plant Science, 2021, 12, 663565.	3.6	7
16	Plant production in water-limited environments. Journal of Experimental Botany, 2021, 72, 5097-5101.	4.8	15
17	Predicting phenotypes from genetic, environment, management, and historical data using CNNs. Theoretical and Applied Genetics, 2021, 134, 3997-4011.	3.6	20
18	Modelling selection response in plant-breeding programs using crop models as mechanistic gene-to-phenotype (CGM-G2P) multi-trait link functions. In Silico Plants, 2021, 3, .	1.9	35

#	Article	IF	CITATIONS
19	Detecting Sorghum Plant and Head Features from Multispectral UAV Imagery. Plant Phenomics, 2021, 2021, 9874650.	5.9	10
20	How Do Crops Balance Water Supply and Demand when Water Is Limiting?. Proceedings (mdpi), 2020, 36,	0.2	0
21	The roles of credibility and transdisciplinarity in modelling to support future crop improvement. In Silico Plants, 2020, 2, .	1.9	6
22	Large-scale genome-wide association study reveals that drought-induced lodging in grain sorghum is associated with plant height and traits linked to carbon remobilisation. Theoretical and Applied Genetics, 2020, 133, 3201-3215.	3.6	14
23	Simulating the effect of flowering time on maize individual leaf area in contrasting environmental scenarios. Journal of Experimental Botany, 2020, 71, 5577-5588.	4.8	6
24	Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sensing, 2020, 12, 1024.	4.0	89
25	Crop science: A foundation for advancing predictive agriculture. Crop Science, 2020, 60, 544-546.	1.8	26
26	Designing crops for adaptation to the drought and highâ€ŧemperature risks anticipated in future climates. Crop Science, 2020, 60, 605-621.	1.8	80
27	Differences in temperature response of phenological development among diverse Ethiopian sorghum genotypes are linked to racial grouping and agroecological adaptation. Crop Science, 2020, 60, 977-990.	1.8	12
28	The Impacts of Flowering Time and Tillering on Grain Yield of Sorghum Hybrids across Diverse Environments. Agronomy, 2020, 10, 135.	3.0	10
29	Integrating genetic gain and gap analysis to predict improvements in crop productivity. Crop Science, 2020, 60, 582-604.	1.8	80
30	Spatial and temporal patterns of lodging in grain sorghum (Sorghum bicolor) in Australia. Crop and Pasture Science, 2020, 71, 379.	1.5	2
31	Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 2020, 6, 338-348.	9.3	181
32	An integrated framework for predicting the risk of experiencing temperature conditions that may trigger late-maturity alpha-amylase in wheat across Australia. Crop and Pasture Science, 2020, 71, 1.	1.5	5
33	Are crop and detailed physiological models equally â€ [~] mechanistic' for predicting the genetic variability of whole-plant behaviour? The nexus between mechanisms and adaptive strategies. In Silico Plants, 2020, 2, .	1.9	16
34	Genotypic variation in whole-plant transpiration efficiency in sorghum only partly aligns with variation in stomatal conductance. Functional Plant Biology, 2019, 46, 1072.	2.1	20
35	On the dynamic determinants of reproductive failure under drought in maize. In Silico Plants, 2019, 1, .	1.9	49
36	Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C ₃ and C ₄ Crops. Annual Review of Plant Biology, 2019, 70, 781-808.	18.7	202

#	Article	IF	CITATIONS
37	Quantifying impacts of enhancing photosynthesis on crop yield. Nature Plants, 2019, 5, 380-388.	9.3	226
38	Modelling Heat and Drought Adaptation in Crops. Proceedings (mdpi), 2019, 36, 190.	0.2	1
39	Biological reality and parsimony in crop models—why we need both in crop improvement!. In Silico Plants, 2019, 1, .	1.9	80
40	Integrating Crop Modelling, Physiology, Genetics and Breeding to Aid Crop Improvement for Changing Environments in the Australian Wheatbelt. Proceedings (mdpi), 2019, 36, 4.	0.2	0
41	Integrating modelling and phenotyping approaches to identify and screen complex traits: transpiration efficiency in cereals. Journal of Experimental Botany, 2018, 69, 3181-3194.	4.8	76
42	Modelling the nitrogen dynamics of maize crops – Enhancing the APSIM maize model. European Journal of Agronomy, 2018, 100, 118-131.	4.1	66
43	VERNALIZATION1 Modulates Root System Architecture in Wheat and Barley. Molecular Plant, 2018, 11, 226-229.	8.3	118
44	Sorghum Biomass Prediction Using Uav-Based Remote Sensing Data and Crop Model Simulation. , 2018, ,		19
45	Determining Crop Growth Dynamics in Sorghum Breeding Trials Through Remote and Proximal Sensing Technologies. , 2018, , .		10
46	Simulating daily field crop canopy photosynthesis: an integrated software package. Functional Plant Biology, 2018, 45, 362.	2.1	48
47	Quantifying high temperature risks and their potential effects on sorghum production in Australia. Field Crops Research, 2017, 211, 77-88.	5.1	23
48	Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines. Frontiers in Plant Science, 2017, 8, 1532.	3.6	129
49	Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum. Plant Methods, 2017, 13, 56.	4.3	56
50	Predicting Tillering of Diverse Sorghum Germplasm across Environments. Crop Science, 2017, 57, 78-87.	1.8	14
51	Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement. Frontiers in Plant Science, 2016, 7, 1518.	3.6	64
52	Genotypic Differences in Effects of Short Episodes of Highâ€Temperature Stress during Reproductive Development in Sorghum. Crop Science, 2016, 56, 1561-1572.	1.8	28
53	Genetic Manipulation of Root System Architecture to Improve Drought Adaptation in Sorghum. Compendium of Plant Genomes, 2016, , 207-226.	0.5	3
54	Hybrid variation for root system efficiency in maize: potential links to drought adaptation. Functional Plant Biology, 2016, 43, 502.	2.1	41

#	Article	IF	CITATIONS
55	Yield trends under varying environmental conditions for sorghum and wheat across Australia. Agricultural and Forest Meteorology, 2016, 228-229, 276-285.	4.8	38
56	Sorghum Crop Modeling and Its Utility in Agronomy and Breeding. Agronomy, 2016, , .	0.2	4
57	Molecular Breeding for Complex Adaptive Traits: How Integrating Crop Ecophysiology and Modelling Can Enhance Efficiency. , 2016, , 147-162.		38
58	Soil water capture trends over 50 years of single-cross maize (<i>Zea mays</i> L) breeding in the US corn-belt. Journal of Experimental Botany, 2015, 66, 7339-7346.	4.8	58
59	The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 2015, 21, 4115-4127.	9.5	230
60	Limitedâ€Transpiration Trait May Increase Maize Drought Tolerance in the US Corn Belt. Agronomy Journal, 2015, 107, 1978-1986.	1.8	158
61	Sorghum genotypes differ in high temperature responses for seed set. Field Crops Research, 2015, 171, 32-40.	5.1	83
62	Robust features of future climate change impacts on sorghum yields in West Africa. Environmental Research Letters, 2014, 9, 104006.	5.2	93
63	Crop design for specific adaptation in variable dryland production environments. Crop and Pasture Science, 2014, 65, 614.	1.5	152
64	Reply to 'Temperature and drought effects on maize yield'. Nature Climate Change, 2014, 4, 234-234.	18.8	20
65	Foreword to â€~Interdrought IV – Improving Crop Adaptation to Water-limited Environments'. Crop and Pasture Science, 2014, 65, i.	1.5	0
66	Greater Sensitivity to Drought Accompanies Maize Yield Increase in the U.S. Midwest. Science, 2014, 344, 516-519.	12.6	779
67	Characterizing drought stress and trait influence on maize yield under current and future conditions. Global Change Biology, 2014, 20, 867-878.	9.5	212
68	A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytologist, 2014, 203, 155-167.	7.3	53
69	QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering. Theoretical and Applied Genetics, 2014, 127, 2253-2266.	3.6	43
70	Stayâ€green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytologist, 2014, 203, 817-830.	7.3	163
71	Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Functional Plant Biology, 2014, 41, 1019.	2.1	76
72	Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 2014, 65, 6251-6263.	4.8	264

#	Article	IF	CITATIONS
73	APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software, 2014, 62, 327-350.	4.5	1,173
74	Predicting Maize Phenology: Intercomparison of Functions for Developmental Response to Temperature. Agronomy Journal, 2014, 106, 2087-2097.	1.8	112
75	QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theoretical and Applied Genetics, 2013, 126, 1563-1574.	3.6	160
76	Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Research, 2013, 141, 38-46.	5.1	64
77	Physiological determinants of high yielding ultra-narrow row cotton: Canopy development and radiation use efficiency. Field Crops Research, 2013, 148, 86-94.	5.1	44
78	Sorghum dwarfing genes can affect radiation capture and radiation use efficiency. Field Crops Research, 2013, 149, 283-290.	5.1	28
79	The critical role of extreme heat for maize production in the United States. Nature Climate Change, 2013, 3, 497-501.	18.8	706
80	Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia. Climatic Change, 2013, 117, 163-179.	3.6	55
81	Genetic variability in high temperature effects on seed-set in sorghum. Functional Plant Biology, 2013, 40, 439.	2.1	54
82	Modelling temperature, photoperiod and vernalization responses of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae) to predict flowering time. Annals of Botany, 2013, 111, 629-639.	2.9	9
83	Physiological determinants of high yielding ultra-narrow row cotton: Biomass accumulation and partitioning. Field Crops Research, 2012, 134, 122-129.	5.1	19
84	Genetic control of nodal root angle in sorghum and its implications on water extraction. European Journal of Agronomy, 2012, 42, 3-10.	4.1	64
85	Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany, 2012, 78, 157-162.	4.2	125
86	QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics, 2012, 124, 97-109.	3.6	226
87	Stay-green quantitative trait loci's effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Functional Plant Biology, 2011, 38, 553.	2.1	103
88	Effects of nitrogen supply on canopy development of maize and sunflower. Crop and Pasture Science, 2011, 62, 1045.	1.5	35
89	Decrease in sorghum grain yield due to the dw3 dwarfing gene is caused by reduction in shoot biomass. Field Crops Research, 2011, 124, 231-239.	5.1	38
90	Juvenility and flowering of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae) in relation to vernalization and daylength. Annals of Botany, 2011, 108, 215-220.	2.9	7

#	Article	IF	CITATIONS
91	Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. Journal of Experimental Botany, 2011, 62, 1743-1755.	4.8	256
92	Estimating winter crop area across seasons and regions using time-sequential MODIS imagery. International Journal of Remote Sensing, 2011, 32, 4281-4310.	2.9	17
93	Does Increased Leaf Appearance Rate Enhance Adaptation to Postanthesis Drought Stress in Sorghum?. Crop Science, 2011, 51, 2728-2740.	1.8	55
94	Genetic Variability and Control of Nodal Root Angle in Sorghum. Crop Science, 2011, 51, 2011-2020.	1.8	73
95	Cardinal Temperatures and Thermal Time for Seed Germination of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae). Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 753-758.	1.0	9
96	Floral ontogeny of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae). Australian Journal of Botany, 2010, 58, 61.	0.6	4
97	Morphological and architectural development of root systems in sorghum and maize. Plant and Soil, 2010, 333, 287-299.	3.7	148
98	Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65, 380-387.	11.1	32
99	Genetic Variation in Potential Kernel Size Affects Kernel Growth and Yield of Sorghum. Crop Science, 2010, 50, 685-695.	1.8	25
100	Yield and Maturity of Ultraâ€Narrow Row Cotton in High Input Production Systems. Agronomy Journal, 2010, 102, 843-848.	1.8	16
101	Regulation of tillering in sorghum: genotypic effects. Annals of Botany, 2010, 106, 69-78.	2.9	53
102	Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 2010, 61, 2185-2202.	4.8	275
103	Experimental and modelling studies of droughtâ€adaptive root architectural traits in wheat (<i>Triticum aestivum</i> L.). Plant Biosystems, 2010, 144, 458-462.	1.6	80
104	Regulation of tillering in sorghum: environmental effects. Annals of Botany, 2010, 106, 57-67.	2.9	77
105	Functional dynamics of the nitrogen balance of sorghum: I. N demand of vegetative plant parts. Field Crops Research, 2010, 115, 19-28.	5.1	91
106	Functional dynamics of the nitrogen balance of sorghum. II. Grain filling period. Field Crops Research, 2010, 115, 29-38.	5.1	89
107	Pre-anthesis ovary development determines genotypic differences in potential kernel weight in sorghum. Journal of Experimental Botany, 2009, 60, 1399-1408.	4.8	65
108	Modelling Crop Improvement in a G×E×M Framework via Gene–Trait–Phenotype Relationships. , 2009, ,		69

108 235-581.

#	Article	IF	CITATIONS
109	Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in Plant Biology, 2009, 12, 231-240.	7.1	153
110	Designing the sorghum crop model in APSIM to simulate the physiology and genetics of complex adaptive traits. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S222.	1.8	2
111	Simulating the Yield Impacts of Organ-Level Quantitative Trait Loci Associated With Drought Response in Maize: A "Gene-to-Phenotype―Modeling Approach. Genetics, 2009, 183, 1507-1523.	2.9	210
112	Modelling environmental effects on phenology and canopy development of diverse sorghum genotypes. Field Crops Research, 2009, 111, 157-165.	5.1	65
113	Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply. Field Crops Research, 2009, 113, 256-267.	5.1	95
114	Can Changes in Canopy and/or Root System Architecture Explain Historical Maize Yield Trends in the U.S. Corn Belt?. Crop Science, 2009, 49, 299-312.	1.8	594
115	Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 2008, 303, 115-129.	3.7	343
116	Shortâ€ŧerm responses of leaf growth rate to water deficit scale up to wholeâ€plant and crop levels: an integrated modelling approach in maize. Plant, Cell and Environment, 2008, 31, 378-391.	5.7	122
117	Determination of grain number in sorghum. Field Crops Research, 2008, 108, 259-268.	5.1	57
118	Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Australian Journal of Agricultural Research, 2008, 59, 354.	1.5	175
119	Reliability of production of quick to medium maturity maize in areas of variable rainfall in north-east Australia. Australian Journal of Experimental Agriculture, 2008, 48, 326.	1.0	20
120	Estimating crop area using seasonal time series of Enhanced Vegetation Index from MODIS satellite imagery. Australian Journal of Agricultural Research, 2007, 58, 316.	1.5	50
121	The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 2006, 33, 823.	2.1	529
122	Modeling chickpea growth and development: Phenological development. Field Crops Research, 2006, 99, 1-13.	5.1	75
123	Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science, 2006, 11, 587-593.	8.8	364
124	Exploring profit – Sustainability trade-offs in cropping systems using evolutionary algorithms. Environmental Modelling and Software, 2006, 21, 1368-1374.	4.5	42
125	Preface to Special Issue: Complex traits and plant breeding—can we understand the complexities of gene-to-phenotype relationships and use such knowledge to enhance plant breeding outcomes?. Australian Journal of Agricultural Research, 2005, 56, 869.	1.5	16
126	Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems. Australian Journal of Agricultural Research, 2005, 56, 947.	1.5	142

#	Article	IF	CITATIONS
127	Three Putative Types of El Niño Revealed by Spatial Variability in Impact on Australian Wheat Yield. Journal of Climate, 2005, 18, 1566-1574.	3.2	32
128	Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Functional Plant Biology, 2005, 32, 945.	2.1	226
129	A simple regional-scale model for forecasting sorghum yield across North-Eastern Australia. Agricultural and Forest Meteorology, 2005, 132, 143-153.	4.8	53
130	Rainfall Variability at Decadal and Longer Time Scales: Signal or Noise?. Journal of Climate, 2005, 18, 89-96.	3.2	65
131	Modelling the effects of row configuration on sorghum yield reliability in north-eastern Australia. Australian Journal of Agricultural Research, 2005, 56, 11.	1.5	68
132	Implications of Seasonal Climate Forecasts on World Wheat Trade: A Stochastic, Dynamic Analysis. Canadian Journal of Agricultural Economics, 2004, 52, 289-312.	2.1	17
133	On Systems Thinking, Systems Biology, and the in Silico Plant. Plant Physiology, 2004, 134, 909-911.	4.8	116
134	On measuring quality of a probabilistic commodity forecast for a system that incorporates seasonal climate forecasts. International Journal of Climatology, 2003, 23, 1195-1210.	3.5	46
135	Evaluating Plant Breeding Strategies by Simulating Gene Action and Dryland Environment Effects. Agronomy Journal, 2003, 95, 99.	1.8	158
136	Genotype and Environment Effects on Dynamics of Harvest Index during Grain Filling in Sorghum. Agronomy Journal, 2003, 95, 199.	1.8	41
137	Simulation Supplements Field Studies to Determine No-Till Dryland Corn Population Recommendations for Semiarid Western Nebraska. Agronomy Journal, 2003, 95, 884.	1.8	25
138	Simulation Supplements Field Studies to Determine No-Till Dryland Corn Population Recommendations for Semiarid Western Nebraska. Agronomy Journal, 2003, 95, 884-891.	1.8	28
139	Evaluating Plant Breeding Strategies by Simulating Gene Action and Dryland Environment Effects. Agronomy Journal, 2003, 95, 99-113.	1.8	67
140	Tillering in Grain Sorghum over a Wide Range of Population Densities: Identification of a Common Hierarchy for Tiller Emergence, Leaf Area Development and Fertility. Annals of Botany, 2002, 90, 87-98.	2.9	92
141	Tillering in Grain Sorghum over a Wide Range of Population Densities: Modelling Dynamics of Tiller Fertility. Annals of Botany, 2002, 90, 99-110.	2.9	68
142	Spatial and temporal patterns in Australian wheat yield and their relationship with ENSO. Australian Journal of Agricultural Research, 2002, 53, 77.	1.5	71
143	Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments. Australian Journal of Agricultural Research, 2002, 53, 379.	1.5	108
144	Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding , 2002, , 167-187.		23

#	Article	IF	CITATIONS
145	The GP problem: quantifying gene-to-phenotype relationships. In Silico Biology, 2002, 2, 151-64.	0.9	58
146	Highlights of Drought Policy and Related Science in Australia and the U.S.A Water International, 2001, 26, 349-357.	1.0	6
147	Effects of Seasonal Climate Variability and the Use of Climate Forecasts on Wheat Supply in the United States, Australia, and Canada. ASA Special Publication, 2001, , .	0.8	Ο
148	Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling?. Annals of Applied Biology, 2001, 138, 91-95.	2.5	262
149	Does Maintaining Green Leaf Area in Sorghum Improve Yield under Drought? I. Leaf Growth and Senescence. Crop Science, 2000, 40, 1026-1037.	1.8	205
150	Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields. Australian Journal of Agricultural Research, 2000, 51, 209.	1.5	171
151	Genotype by environment interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in the target population of environments. Australian Journal of Agricultural Research, 2000, 51, 223.	1.5	111
152	Does Maintaining Green Leaf Area in Sorghum Improve Yield under Drought? II. Dry Matter Production and Yield. Crop Science, 2000, 40, 1037-1048.	1.8	330
153	Nitrogen Dynamics and the Physiological Basis of Stay reen in Sorghum. Crop Science, 2000, 40, 1295-1307.	1.8	207
154	Improving Estimates of Individual Leaf Area of Sunflower. Agronomy Journal, 2000, 92, 761-765.	1.8	24
155	Genotype and Water Limitation Effects on Transpiration Efficiency in Sorghum. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2000, 2, 265-286.	0.4	35
156	Comparing the Value of Seasonal Climate Forecasting Systems in Managing Cropping Systems. Atmospheric and Oceanographic Sciences Library, 2000, , 183-195.	0.1	4
157	Using Seasonal Climate Forecasts in Forecasting the Australian Wheat Crop. Atmospheric and Oceanographic Sciences Library, 2000, , 351-366.	0.1	8
158	Can Seasonal Climate Forecasts Predict Movements in Grain Prices?. Atmospheric and Oceanographic Sciences Library, 2000, , 367-380.	0.1	4
159	A General Systems Approach to Applying Seasonal Climate Forecasts. Atmospheric and Oceanographic Sciences Library, 2000, , 51-65.	0.1	23
160	Adaptation of sorghum: characterisation of genotypic flowering responses to temperature and photoperiod. Theoretical and Applied Genetics, 1999, 99, 900-911.	3.6	69
161	Dry matter accumulation and distribution in five cultivars of maize (Zea mays): relationships and procedures for use in crop modelling. Australian Journal of Agricultural Research, 1999, 50, 513.	1.5	22
162	Improving wheat simulation capabilities in Australia from a cropping systems perspective II. Testing simulation capabilities of wheat growth. European Journal of Agronomy, 1998, 8, 83-99.	4.1	22

#	Article	IF	CITATIONS
163	Temperature and Sowing Date Affect the Linear Increase of Sunflower Harvest Index. Agronomy Journal, 1998, 90, 324-328.	1.8	28
164	Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays). Australian Journal of Agricultural Research, 1998, 49, 249.	1.5	66
165	Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade. Australian Journal of Agricultural Research, 1998, 49, 665.	1.5	75
166	Improving wheat simulation capabilities in Australia from a cropping systems perspective: water and nitrogen effects on spring wheat in a semi-arid environment. Developments in Crop Science, 1997, , 99-112.	0.1	10
167	On the extent of genetic variation for transpiration efficiency in sorghum. Australian Journal of Agricultural Research, 1997, 48, 649.	1.5	69
168	Effect of Radiation Environment on Radiation Use Efficiency and Growth of Sunflower. Crop Science, 1997, 37, 1208-1214.	1.8	43
169	Effect of Specific Leaf Nitrogen on Radiation Use Efficiency and Growth of Sunflower. Crop Science, 1997, 37, 1201-1208.	1.8	51
170	Improving wheat simulation capabilities in Australia from a cropping systems perspective: water and nitrogen effects on spring wheat in a semi-arid environment. European Journal of Agronomy, 1997, 7, 75-88.	4.1	51
171	Environmental control of potential yield of sunflower in the subtropics. Australian Journal of Agricultural Research, 1997, 48, 231.	1.5	28
172	Forecasting regional crop production using SOI phases: an example for the Australian peanut industry. Australian Journal of Agricultural Research, 1997, 48, 789.	1.5	28
173	The role of physiological understanding in plant breeding; from a breeding perspective. Field Crops Research, 1996, 49, 11-37.	5.1	177
174	Frost in Northeast Australia: Trends and Influences of Phases of the Southern Oscillation. Journal of Climate, 1996, 9, 1896-1909.	3.2	71
175	SOI PHASES AND CLIMATIC RISK TO PEANUT PRODUCTION: A CASE STUDY FOR NORTHERN AUSTRALIA. International Journal of Climatology, 1996, 16, 783-789.	3.5	46
176	Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature, 1996, 384, 252-255.	27.8	311
177	A Peanut Simulation Model: II. Assessing Regional Production Potential. Agronomy Journal, 1995, 87, 1093-1099.	1.8	21
178	A Peanut Simulation Model: I. Model Development and Testing. Agronomy Journal, 1995, 87, 1085-1093.	1.8	59
179	The development of strategies for improved agricultural systems and land-use management. Systems Approaches for Sustainable Agricultural Development, 1994, , 81-96.	0.2	5
180	The development of strategies for improved agricultural systems and land-use management. , 1994, , 81-96.		2

11

#	Article	IF	CITATIONS
181	Prediction of Sweet Corn Phenology in Subtropical Environments. Agronomy Journal, 1993, 85, 410-415.	1.8	30
182	A Sunflower Simulation Model: I. Model Development. Agronomy Journal, 1993, 85, 725-735.	1.8	121
183	A Sunflower Simulation Model: II. Simulating Production Risks in a Variable Subâ€Tropical Environment. Agronomy Journal, 1993, 85, 735-742.	1.8	28
184	Leaf Nitrogen Content and Minimum Temperature Interactions Affect Radiationâ€Use Efficiency in Peanut. Crop Science, 1993, 33, 476-481.	1.8	24
185	Variation in Crop Radiationâ€Use Efficiency with Increased Diffuse Radiation. Crop Science, 1992, 32, 1281-1284.	1.8	144
186	Genotype and Water Limitation Effects on Phenology, Growth, and Transpiration Efficiency in Grain Sorghum. Crop Science, 1992, 32, 781-786.	1.8	56
187	Improving Genotypic Adaptation in Crops – a Role for Breeders, Physiologists and Modellers. Experimental Agriculture, 1991, 27, 155-175.	0.9	119
188	Carbon Isotope Discrimination Varies Genetically in C ₄ Species. Plant Physiology, 1990, 92, 534-537.	4.8	50
189	Genotype-by-Environment Interaction in Grain Sorghum I. Effects of Temperature on Radiation Use Efficiency. Crop Science, 1989, 29, 370.	1.8	28
190	Genotype-by-Environment Interaction in Grain Sorghum. II. Effects of Temperature and Photoperiod on Ontogeny. Crop Science, 1989, 29, 376.	1.8	64
191	Genotype-by-Environment Interaction in Grain Sorghum. III. Modeling the Impact in Field Environments. Crop Science, 1989, 29, 385.	1.8	28
192	Effects of Planting Time and Harvest Age on Cassava (Manihot esculenta) in Northern Australia. I. Crop Growth and Yield in Moist Environments. Experimental Agriculture, 1987, 23, 401-414.	0.9	10
193	Effects of Planting Time and Harvest Age on Cassava (<i>Manihot esculenta</i>) in Northern Australia. II. Crop Growth and Yield in a Seasonally-Dry Environment. Experimental Agriculture, 1987, 23, 415-424.	0.9	7
194	Effects of Seasonal Climate Variability and the Use of Climate Forecasts on Wheat Supply in the United States, Australia, and Canada. ASA Special Publication, 0, , 101-123.	0.8	2
195	Sorghum Crop Modeling and Its Utility in Agronomy and Breeding. Agronomy, 0, , 215-239.	0.2	10