List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2960003/publications.pdf Version: 2024-02-01

YUDI C. VIASOV

#	Article	IF	CITATIONS
1	Tasting of beverages using an electronic tongue. Sensors and Actuators B: Chemical, 1997, 44, 291-296.	7.8	187
2	Electronic tongues and their analytical application. Analytical and Bioanalytical Chemistry, 2002, 373, 136-146.	3.7	174
3	Electronic nose and electronic tongue integration for improved classification of clinical and food samples. Sensors and Actuators B: Chemical, 2000, 64, 15-21.	7.8	148
4	Application of Electronic Tongue for Quantitative Analysis of Mineral Water and Wine. Electroanalysis, 1999, 11, 814-820.	2.9	124
5	Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions. Sensors and Actuators B: Chemical, 1997, 44, 532-537.	7.8	112
6	«Electronic tongue» — new analytical tool for liquid analysis on the basis of non-specific sensors and methods of pattern recognition. Sensors and Actuators B: Chemical, 2000, 65, 235-236.	7.8	100
7	All-solid-state electronic tongue and its application for beverage analysis. Analytica Chimica Acta, 2002, 468, 303-314.	5.4	100
8	Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem. Sensors and Actuators B: Chemical, 2003, 95, 391-399.	7.8	99
9	Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine. Sensors and Actuators B: Chemical, 2000, 69, 342-347.	7.8	89
10	Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochimica Acta, 2001, 47, 251-258.	5.2	88
11	Electronic tongue for pharmaceutical analytics: quantification of tastes and masking effects. Analytical and Bioanalytical Chemistry, 2004, 380, 36-45.	3.7	82
12	The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors and Actuators B: Chemical, 1999, 58, 464-468.	7.8	80
13	Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array. Sensors and Actuators B: Chemical, 1996, 34, 539-542.	7.8	75
14	Chalcogenide glass chemical sensors: Research and analytical applications. Talanta, 1994, 41, 1059-1063.	5.5	73
15	Fermentation monitoring using multisensor systems: feasibility study of the electronic tongue. Analytical and Bioanalytical Chemistry, 2004, 378, 391-395.	3.7	64
16	Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor. Sensors and Actuators B: Chemical, 1996, 30, 77-80.	7.8	61
17	Copper ion-selective chalcogenide glass electrodes. Analytica Chimica Acta, 1986, 185, 137-158.	5.4	57
18	A flow injection system based on chalcogenide glass sensors for the determination of heavy metals. Analytica Chimica Acta, 2000, 403, 273-277.	5.4	57

#	Article	IF	CITATIONS
19	Cross-sensitivity of chalcogenide glass sensors in solutions of heavy metal ions. Sensors and Actuators B: Chemical, 1996, 34, 456-461.	7.8	56
20	Can pulsed laser deposition serve as an advanced technique in fabricating chemical sensors?. Sensors and Actuators B: Chemical, 2001, 78, 273-278.	7.8	56
21	Chemical sensor array for multicomponent analysis of biological liquids. Analytica Chimica Acta, 1999, 385, 131-135.	5.4	55
22	Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique. Sensors and Actuators B: Chemical, 2000, 68, 254-259.	7.8	53
23	Copper, cadmium and thallium thin film sensors based on chalcogenide glasses. Analytica Chimica Acta, 2001, 433, 103-110.	5.4	51
24	Analytical applications of chalcogenide glass chemical sensors in environmental monitoring and process control. Sensors and Actuators B: Chemical, 1995, 24, 309-311.	7.8	50
25	Recognition of liquid and flesh food using an `electronic tongue'. International Journal of Food Science and Technology, 2002, 37, 375-385.	2.7	46
26	Compositional dependence of ionic conductivity and diffusion in mixed chalcogen Ag-containing glasses. Solid State Ionics, 1987, 24, 179-187.	2.7	40
27	A new thin-film Pb microsensor based on chalcogenide glasses. Sensors and Actuators B: Chemical, 2000, 71, 13-18.	7.8	39
28	Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors?a critical review. Analytical and Bioanalytical Chemistry, 2003, 376, 788-796.	3.7	39
29	Cross-sensitive chemical sensors based on tetraphenylporphyrin and phthalocyanine. Analytica Chimica Acta, 2002, 457, 297-303.	5.4	37
30	Detection of ultra-low activities of heavy metal ions by an array of potentiometric chemical sensors. Mikrochimica Acta, 2008, 163, 71-80.	5.0	37
31	Immobilization of Urease and Cholinesterase on the Surface of Semiconductor Transducer for the Development of Light-Addressable Potentiometric Sensors. Mikrochimica Acta, 2004, 144, 41-50.	5.0	35
32	Multicomponent thin films for electrochemical sensor applications prepared by pulsed laser deposition. Sensors and Actuators B: Chemical, 2001, 76, 327-330.	7.8	32
33	Enzyme semiconductor sensor based on butyrylcholinesterase. Sensors and Actuators B: Chemical, 1991, 4, 283-286.	7.8	27
34	Potentiometric and theoretical studies of the carbonate sensors based on 3-bromo-4-hexyl-5-nitrotrifluoroacetophenone. Analyst, The, 2004, 129, 213.	3.5	27
35	Chalcogenide-based thin film sensors prepared by pulsed laser deposition technique. Applied Physics A: Materials Science and Processing, 1999, 69, S803-S805.	2.3	24
36	Silver ion sensors based on Agî—,Asî—,Seî—,Te glasses I. Ionic sensitivity and bulk membrane transport. Sensors and Actuators B: Chemical, 1990, 2, 23-31.	7.8	23

#	Article	IF	CITATIONS
37	Thin-layer chemical sensors based on chemically deposited and modified chalcogenide glasses. Sensors and Actuators B: Chemical, 1993, 15, 184-187.	7.8	23
38	Photocurable carbonate-selective membranes for chemical sensors containing lipophilic additives. Sensors and Actuators B: Chemical, 1997, 44, 397-401.	7.8	23
39	Determination of cyanide using flow-injection multisensor system. Talanta, 2002, 58, 1071-1076.	5.5	22
40	Silver bromide based chalcogenide glassy-crystalline ion-selective electrodes. Analyst, The, 1989, 114, 185.	3.5	21
41	New photocurable composition for ISFET polymer membranes. Sensors and Actuators B: Chemical, 1994, 19, 625-628.	7.8	21
42	Development and analytical evaluation of a multisensor system for water quality monitoring. Sensors and Actuators B: Chemical, 1995, 27, 377-379.	7.8	21
43	Chapter 10 Electronic tongues: new analytical perspective for chemical sensors. Comprehensive Analytical Chemistry, 2003, , 437-486.	1.3	21
44	Solvent polymeric membranes based on tridodecylmethylammonium chloride studied by potentiometry and electrochemical impedance spectroscopy. Analytica Chimica Acta, 2004, 514, 107-113.	5.4	19
45	Synthesis and chemosensing properties of cinnoline-containing poly(arylene ethynylene)s. Beilstein Journal of Organic Chemistry, 2015, 11, 373-384.	2.2	19
46	Impurity conductivity in chalcogenide glasses doped with iron in equilibrium way by cooling from melt. Journal of Non-Crystalline Solids, 1980, 35-36, 901-905.	3.1	18
47	Fixation of DNA directly on optical waveguide surfaces for molecular probe biosensor development. Sensors and Actuators B: Chemical, 1995, 29, 324-327.	7.8	18
48	Ion-selective field-effect transistor and chalcogenide glass ion-selective electrode systems for biological investigations and industrial applications. Analyst, The, 1994, 119, 449.	3.5	17
49	Multisensor systems of the electronic tongue type as novel opportunities in design and application of chemical sensors. Russian Chemical Reviews, 2006, 75, 125-132.	6.5	17
50	Analytical applications of pH-ISFETs. Sensors and Actuators B: Chemical, 1992, 10, 1-6.	7.8	16
51	Mechanism studies on lead ion-selective chalcogenide glass sensors. Sensors and Actuators B: Chemical, 1992, 10, 55-60.	7.8	16
52	Laser-scanned silicon transducer (LSST) as a multisensor system. Sensors and Actuators B: Chemical, 2004, 103, 457-462.	7.8	16
53	Chalcogenide glass chemical sensors: Relationship between ionic response, surface ion exchange and bulk membrane transport. Journal of Electroanalytical Chemistry, 1994, 378, 201-204.	3.8	14
54	Investigation of pH-sensitive ISFETs with oxide and nitride membranes using colloid chemistry methods. Sensors and Actuators B: Chemical, 1990, 1, 357-360.	7.8	12

#	Article	IF	CITATIONS
55	Sensor R&D in the former Soviet Union. Sensors and Actuators B: Chemical, 1993, 15, 6-15.	7.8	12
56	A mercury sensor for flow- and batch-injection analyses. Sensors and Actuators B: Chemical, 1995, 24, 317-319.	7.8	11
57	Potentiometric and impedance studies of membranes based on anion-exchanger and lipophilic inert electrolyte ETH 500. Electrochimica Acta, 2004, 49, 5203-5207.	5.2	11
58	Optical and thermal sensitivity of pH-ISFET with Ta2O5 membrane. Sensors and Actuators A: Physical, 1991, 28, 197-202.	4.1	9
59	New membrane material for thallium (I)-selective sensors based on arsenic sulfide glasses. Sensors and Actuators B: Chemical, 2015, 207, 940-944.	7.8	8
60	Membrane-oxide semiconductor field-effect transistor (MOSFET) sensors. Mikrochimica Acta, 1991, 104, 363-377.	5.0	7
61	<title>Pulsed-laser deposition as a novel preparation technique for chemical microsensors</title> . , 1999, , .		7
62	Silver ion sensors based on Ag-As-Se-Te glasses II. Surface studies and tracer measurements of ion response. Sensors and Actuators B: Chemical, 1990, 2, 43-49.	7.8	6
63	DEVELOPMENT OF ISFET USING GLASSY SOLID ELECTROLYTES. , 1989, , 173-189.		6
64	Conversion electron mössbauer spectroscopic study of Fe-Implanted AgAsS2 Glass. Journal of Non-Crystalline Solids, 1989, 113, 203-209.	3.1	4
65	Ion-implanted chalcogenide glasses as membrane materials for solid-state chemical sensors. Sensors and Actuators B: Chemical, 1992, 7, 501-504.	7.8	4
66	SENSING MECHANISM OF ION-SELECTIVE CHALCOGENIDE GLASS ELECTRODES. , 1989, , 243-294.		3
67	Spectroscopic study of dyes for pH and methanol sensing. Dyes and Pigments, 2009, 83, 381-384.	3.7	3
68	The nitrate-selective sensor with crystalline membrane. Sensors and Actuators B: Chemical, 1995, 27, 369-371.	7.8	2
69	ESR and Mössbauer spectroscopy of iron-doped Agî—,Asî—,S and Geî—,Sbî—,Se glasses. Journal of Non-Crystalline Solids, 1987, 97-98, 659-662.	² 3.1	1
70	Peculiarities of DNA detection using evanescent field biosensing. , 0, , .		1
71	COPPER-SELECTIVE FIELD-EFFECT TRANSISTOR (ISFET) WITH CHALCOGENIDE MEMBRANE. , 1989, , 625-638.		1
72	Title is missing!. Journal of Analytical Chemistry, 2001, 56, 393-394.	0.9	0