Anna Qvarnstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2959171/publications.pdf

Version: 2024-02-01

103 8,081 43
papers citations h-index

85 g-index

110 all docs

110 docs citations

110 times ranked 7459 citing authors

#	Article	IF	CITATIONS
1	Adaptive coloration in pied flycatchers (⟨i⟩Ficedula hypoleuca⟨li⟩)â€"The devil is in the detail. Ecology and Evolution, 2021, 11, 1501-1525.	1.9	6
2	Homage to Felsenstein 1981, or why are there so few/many species?. Evolution; International Journal of Organic Evolution, 2021, 75, 978-988.	2.3	13
3	The role of introductory alarm calls for song discrimination in Ficedula flycatchers. Animal Behaviour, 2021, 177, 241-251.	1.9	2
4	Should females prefer old males?. Evolution Letters, 2021, 5, 507-520.	3.3	11
5	Low Heritability but Significant Early Environmental Effects on Resting Metabolic Rate in a Wild Passerine. American Naturalist, 2021, 198, 551-560.	2.1	5
6	Differences in incubation behaviour and niche separation of two competing flycatcher species. Behavioral Ecology and Sociobiology, 2020, 74, 105.	1.4	5
7	Tissue-specific patterns of regulatory changes underlying gene expression differences among <i>Ficedula</i> flycatchers and their naturally occurring F ₁ hybrids. Genome Research, 2020, 30, 1727-1739.	5 . 5	13
8	Fluctuating optimum and temporally variable selection on breeding date in birds and mammals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31969-31978.	7.1	69
9	Avian Population Studies in the Genomic Era. , 2019, , 267-293.		2
10	Endless forms of sexual selection. PeerJ, 2019, 7, e7988.	2.0	24
10	Endless forms of sexual selection. PeerJ, 2019, 7, e7988. Climateâ€driven buildâ€up of temporal isolation within a recently formed avian hybrid zone. Evolution; International Journal of Organic Evolution, 2018, 72, 363-374.	2.0	24
	Climateâ€driven buildâ€up of temporal isolation within a recently formed avian hybrid zone. Evolution;		
11	Climateâ€driven buildâ€up of temporal isolation within a recently formed avian hybrid zone. Evolution; International Journal of Organic Evolution, 2018, 72, 363-374. Interspecific transfer of parasites following a rangeâ€shift in ⟨i⟩Ficedula⟨/i⟩ flycatchers. Ecology and	2.3	15
11	Climateâ€driven buildâ€up of temporal isolation within a recently formed avian hybrid zone. Evolution; International Journal of Organic Evolution, 2018, 72, 363-374. Interspecific transfer of parasites following a rangeâ€shift in ⟨i⟩Ficedula⟨ i⟩ flycatchers. Ecology and Evolution, 2018, 8, 12183-12192. Difference in plasticity of resting metabolic rate – the proximate explanation to different niche	2.3	13
11 12 13	Climateâ€driven buildâ€up of temporal isolation within a recently formed avian hybrid zone. Evolution; International Journal of Organic Evolution, 2018, 72, 363-374. Interspecific transfer of parasites following a rangeâ€shift in ⟨i⟩Ficedula⟨li⟩ flycatchers. Ecology and Evolution, 2018, 8, 12183-12192. Difference in plasticity of resting metabolic rate – the proximate explanation to different niche breadth in sympatric ⟨i⟩Ficedula⟨li⟩ flycatchers. Ecology and Evolution, 2018, 8, 4575-4586. Inferring Individual Inbreeding and Demographic History from Segments of Identity by Descent	2.3 1.9	15 13 8
11 12 13	Climateâ€driven buildâ€up of temporal isolation within a recently formed avian hybrid zone. Evolution; International Journal of Organic Evolution, 2018, 72, 363-374. Interspecific transfer of parasites following a rangeâ€shift in ⟨i⟩Ficedula⟨/i⟩ flycatchers. Ecology and Evolution, 2018, 8, 12183-12192. Difference in plasticity of resting metabolic rate – the proximate explanation to different niche breadth in sympatric ⟨i⟩Ficedula⟨/i⟩ flycatchers. Ecology and Evolution, 2018, 8, 4575-4586. Inferring Individual Inbreeding and Demographic History from Segments of Identity by Descent in⟨i⟩Ficedula⟨/i⟩Flycatcher Genome Sequences. Genetics, 2017, 205, 1319-1334. Reproductive character displacement of female, but not male song discrimination in an avian hybrid	2.3 1.9 1.9 2.9	15 13 8
11 12 13 14	Climateâ€driven buildâ€up of temporal isolation within a recently formed avian hybrid zone. Evolution; International Journal of Organic Evolution, 2018, 72, 363-374. Interspecific transfer of parasites following a rangeâ€shift in ⟨i⟩Ficedula⟨li⟩ flycatchers. Ecology and Evolution, 2018, 8, 12183-12192. Difference in plasticity of resting metabolic rate â€⁴ the proximate explanation to different niche breadth in sympatric ⟨i⟩Ficedula⟨li⟩ flycatchers. Ecology and Evolution, 2018, 8, 4575-4586. Inferring Individual Inbreeding and Demographic History from Segments of Identity by Descent in⟨i⟩Ficedula⟨li⟩Flycatcher Genome Sequences. Genetics, 2017, 205, 1319-1334. Reproductive character displacement of female, but not male song discrimination in an avian hybrid zone. Evolution; International Journal of Organic Evolution, 2017, 71, 1776-1786. Genetic divergence of early song discrimination between two young songbird species. Nature Ecology	2.3 1.9 1.9 2.9	15 13 8 77

#	Article	IF	CITATIONS
19	Females discriminate against heterospecific sperm in a natural hybrid zone. Evolution; International Journal of Organic Evolution, 2016, 70, 1844-1855.	2.3	45
20	Wholeâ€genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Molecular Ecology Resources, 2016, 16, 727-741.	4.8	66
21	Species replacement reduces community participation in avian antipredator groups. Behavioral Ecology, 2016, 27, 1499-1506.	2.2	6
22	Competition-driven build-up of habitat isolation and selection favoring modified dispersal patterns in a young avian hybrid zone. Evolution; International Journal of Organic Evolution, 2016, 70, 2226-2238.	2.3	29
23	Climate adaptation and speciation: particular focus on reproductive barriers in <i>Ficedula</i> flycatchers. Evolutionary Applications, 2016, 9, 119-134.	3.1	25
24	Song discrimination by nestling collared flycatchers during early development. Biology Letters, 2016, 12, 20160234.	2.3	12
25	Direct estimate of the rate of germline mutation in a bird. Genome Research, 2016, 26, 1211-1218.	5.5	190
26	Increasing the power of genome wide association studies in natural populations using repeated measures – evaluation and implementation. Methods in Ecology and Evolution, 2016, 7, 792-799.	5.2	55
27	High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree. PLoS Genetics, 2016, 12, e1006044.	3.5	85
28	Ultra-Rapid Vision in Birds. PLoS ONE, 2016, 11, e0151099.	2.5	66
29	A blueprint for vocal learning: auditory predispositions from brains to genomes. Biology Letters, 2015, 11, 20150155.	2.3	29
30	Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of <i>Ficedula</i> flycatchers. Genome Research, 2015, 25, 1656-1665.	5.5	385
31	Evolutionary analysis of the female-specific avian W chromosome. Nature Communications, 2015, 6, 7330.	12.8	121
32	Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150156.	2.6	45
33	Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nature Communications, 2014, 5, 5448.	12.8	44
34	Estimation of linkage disequilibrium and interspecific gene flow in <i><scp>F</scp>icedula</i> flycatchers by a newly developed 50k singleâ€nucleotide polymorphism array. Molecular Ecology Resources, 2014, 14, 1248-1260.	4.8	58
35	A highâ€density linkage map enables a secondâ€generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Molecular Ecology, 2014, 23, 4035-4058.	3.9	220

Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula) Tj ETQq0 0 0,5,8BT /Overlock 10 Tf

36

#	Article	IF	Citations
37	COARSE DARK PATTERNING FUNCTIONALLY CONSTRAINS ADAPTIVE SHIFTS FROM APOSEMATISM TO CRYPSIS IN STRAWBERRY POISON FROGS. Evolution; International Journal of Organic Evolution, 2014, 68, 2793-2803.	2.3	7
38	Malaria-Infected Female Collared Flycatchers (Ficedula albicollis) Do Not Pay the Cost of Late Breeding. PLoS ONE, 2014, 9, e85822.	2.5	16
39	Malaria infections reinforce competitive asymmetry between two <i>Ficedula</i> flycatchers in a recent contact zone. Molecular Ecology, 2013, 22, 4591-4601.	3.9	24
40	Optimizing the trade-off between offspring number and quality in unpredictable environments: Testing the role of differential androgen transfer to collared flycatcher eggs. Hormones and Behavior, 2013, 63, 813-822.	2.1	9
41	SEX CHROMOSOME LINKED GENETIC VARIANCE AND THE EVOLUTION OF SEXUAL DIMORPHISM OF QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2013, 67, 609-619.	2.3	38
42	Does aggression and explorative behaviour decrease with lost warning coloration?. Biological Journal of the Linnean Society, 2013, 108, 116-126.	1.6	33
43	Variation in eggshell traits between geographically distant populations of pied flycatchers Ficedula hypoleuca. Journal of Avian Biology, 2013, 44, 111-120.	1.2	22
44	Adaptive colouration in amphibians. Seminars in Cell and Developmental Biology, 2013, 24, 553-561.	5.0	70
45	Low fertility of wild hybrid male flycatchers despite recent divergence. Biology Letters, 2013, 9, 20130169.	2.3	42
46	Relative performance of hybrid nestlings in <i>Ficedula</i> flycatchers: a translocation experiment. Ecology and Evolution, 2013, 3, 356-364.	1.9	3
47	The role of male contest competition over mates in speciation. Environmental Epigenetics, 2012, 58, 493-509.	1.8	65
48	The genomic landscape of species divergence in Ficedula flycatchers. Nature, 2012, 491, 756-760.	27.8	589
49	Low Genetic Variance in the Duration of the Incubation Period in a Collared Flycatcher (<i>Ficedula) Tj ETQq1 1 0</i>	.784314 r 2.1	gBT /Overlo
50	Environmentâ€dependent selection on mate choice in a natural population of birds. Ecology Letters, 2012, 15, 611-618.	6.4	59
51	Combined effects of interspecific competition and hybridization impede local coexistence of Ficedula flycatchers. Evolutionary Ecology, 2012, 26, 927-942.	1.2	37
52	Climate change, breeding date and nestling diet: how temperature differentially affects seasonal changes in pied flycatcher diet depending on habitat variation. Journal of Animal Ecology, 2012, 81, 926-936.	2.8	101
53	POSITIVE FEEDBACK BETWEEN ECOLOGICAL AND REPRODUCTIVE CHARACTER DISPLACEMENT IN A YOUNG AVIAN HYBRID ZONE. Evolution; International Journal of Organic Evolution, 2012, 66, 1167-1179.	2.3	44
54	Learning the Hard Way: Imprinting Can Enhance Enforced Shifts in Habitat Choice. International Journal of Ecology, 2011, 2011, 1-7.	0.8	18

#	Article	IF	CITATIONS
55	Female Drosophila melanogaster Gene Expression and Mate Choice: The X Chromosome Harbours Candidate Genes Underlying Sexual Isolation. PLoS ONE, 2011, 6, e17358.	2.5	29
56	A guide to the genomics of ecological speciation in natural animal populations. Ecology Letters, 2011, 14, 9-18.	6.4	57
57	Prospectors combine social and environmental information to improve habitat selection and breeding success in the subsequent year. Journal of Animal Ecology, 2011, 80, 1227-1235.	2.8	77
58	RAPID POPULATION DIVERGENCE LINKED WITH COâ€VARIATION BETWEEN COLORATION AND SEXUAL DISPLAY IN STRAWBERRY POISON FROGS. Evolution; International Journal of Organic Evolution, 2011, 65, 1271-1282.	2.3	45
59	Let's talk turkey: immune competence in domestic and wild fowl. Heredity, 2011, 107, 103-104.	2.6	3
60	Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca). Oecologia, 2011, 165, 277-287.	2.0	15
61	Geographical Variation in Egg Mass and Egg Content in a Passerine Bird. PLoS ONE, 2011, 6, e25360.	2.5	29
62	Temporal differences in food abundance promote coexistence between two congeneric passerines. Oecologia, 2010, 162, 873-884.	2.0	57
63	A HIGH-DENSITY SCAN OF THE Z CHROMOSOME IN FICEDULA FLYCATCHERS REVEALS CANDIDATE LOCI FOR DIVERSIFYING SELECTION. Evolution; International Journal of Organic Evolution, 2010, 64, 3461-3475.	2.3	35
64	No evidence for Z-chromosome rearrangements between the pied flycatcher and the collared flycatcher as judged by gene-based comparative genetic maps. Molecular Ecology, 2010, 19, 3394-3405.	3.9	13
65	Speciation in <i>Ficedula</i> flycatchers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1841-1852.	4.0	89
66	Speciation through evolution of sex-linked genes. Heredity, 2009, 102, 4-15.	2.6	218
67	Effects of hybridization on the immunity of collared <i>Ficedula albicollis</i> and pied flycatchers <i>F. hypoleuca</i> , and their infection by haemosporidians. Journal of Avian Biology, 2009, 40, 352-357.	1.2	16
68	POSTZYGOTIC ISOLATION OVER MULTIPLE GENERATIONS OF HYBRID DESCENDENTS IN A NATURAL HYBRID ZONE: HOW WELL DO SINGLE-GENERATION ESTIMATES REFLECT REPRODUCTIVE ISOLATION?. Evolution; International Journal of Organic Evolution, 2009, 63, 1731-1739.	2.3	57
69	Lifeâ€history divergence facilitates regional coexistence of competing <i>Ficedula</i> flycatchers. Ecology, 2009, 90, 1948-1957.	3.2	51
70	A Gene-Based Genetic Linkage Map of the Collared Flycatcher (<i>Ficedula albicollis</i>) Reveals Extensive Synteny and Gene-Order Conservation During 100 Million Years of Avian Evolution. Genetics, 2008, 179, 1479-1495.	2.9	88
71	Natural and sexual selection against hybrid flycatchers. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 735-744.	2.6	102
72	Does migration of hybrids contribute to post-zygotic isolation in flycatchers?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 707-712.	2.6	37

#	Article	IF	Citations
73	Species divergence in offspring begging intensity: difference in need or manipulation of parents?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1003-1008.	2.6	19
74	Sex Chromosome-Linked Species Recognition and Evolution of Reproductive Isolation in Flycatchers. Science, 2007, 318, 95-97.	12.6	246
75	Direct benefits and costs for hybridizing Ficedula flycatchers. Journal of Evolutionary Biology, 2007, 20, 854-864.	1.7	37
76	The Intersexual Genetic Correlation for Lifetime Fitness in the Wild and Its Implications for Sexual Selection. PLoS ONE, 2007, 2, e744.	2.5	115
77	Levels of linkage disequilibrium in a wild bird population. Biology Letters, 2006, 2, 435-438.	2.3	62
78	A Test of the "Sexy Son―Hypothesis: Sons of Polygynous Collared Flycatchers Do Not Inherit Their Fathers' Mating Status. American Naturalist, 2006, 167, 297-302.	2.1	23
79	Song similarity predicts hybridization in flycatchers. Journal of Evolutionary Biology, 2006, 19, 1202-1209.	1.7	75
80	Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature, 2006, 441, 84-86.	27.8	179
81	Evolution of mate choice in the wild (Reply). Nature, 2006, 444, E16-E17.	27.8	6
82	Genetic Mapping in a Natural Population of Collared Flycatchers (<i>Ficedula albicollis</i>): Conserved Synteny but Gene Order Rearrangements on the Avian Z Chromosome. Genetics, 2006, 174, 377-386.	2.9	93
83	HYBRIDIZATION COST OF DELAYED MATURATION OF SECONDARY SEXUAL TRAITS IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 2005, 59, 2711-2716.	2.3	11
84	HYBRIDIZATION COST OF DELAYED MATURATION OF SECONDARY SEXUAL TRAITS IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 2005, 59, 2711.	2.3	2
85	Cross-fostering reveals seasonal changes in the relative fitness of two competing species of flycatchers. Biology Letters, 2005, 1, 68-71.	2.3	31
86	Hybridization cost of delayed maturation of secondary sexual traits in the collared flycatcher. Evolution; International Journal of Organic Evolution, 2005, 59, 2711-6.	2.3	4
87	Female collared flycatchers learn to prefer males with an artificial novel ornament. Behavioral Ecology, 2004, 15, 543-548.	2.2	17
88	Flycatcher song in allopatry and sympatry - convergence, divergence and reinforcement. Journal of Evolutionary Biology, 2004, 17, 227-237.	1.7	116
89	The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1433-1440.	2.6	1,143
90	Male ornamentation, timing of breeding, and cost of polygyny in the collared flycatcher. Behavioral Ecology, 2003, 14, 68-73.	2.2	24

#	Article	IF	CITATIONS
91	Putting Sexual Traits Into the Context of an Organism: A Life-History Perspective in Studies of Sexual Selection. Auk, 2002, 119, 301-310.	1.4	78
92	Putting Sexual Traits into the Context of an Organism: A Life-History Perspective in Studies of Sexual Selection. Auk, 2002, 119, 301-310.	1.4	1
93	Context-dependent genetic benefits from mate choice. Trends in Ecology and Evolution, 2001, 16, 5-7.	8.7	153
94	Maternal effects, paternal effects and sexual selection. Trends in Ecology and Evolution, 2001, 16, 95-100.	8.7	201
95	Adaptive plasticity in mate preference linked to differences in reproductive effort. Nature, 2000, 405, 344-347.	27.8	210
96	Male–male competition and parental care in collared flycatchers (Ficedula albicollis): an experiment controlling for differences in territory quality. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2547-2552.	2.6	22
97	Genotype-by-Environment Interactions in the Determination of the Size of a Secondary Sexual Character in the Collared Flycatcher (Ficedula albicollis). Evolution; International Journal of Organic Evolution, 1999, 53, 1564.	2.3	56
98	GENOTYPE-BY-ENVIRONMENT INTERACTIONS IN THE DETERMINATION OF THE SIZE OF A SECONDARY SEXUAL CHARACTER IN THE COLLARED FLYCATCHER <i>(FICEDULA ALBICOLLIS)</i> Journal of Organic Evolution, 1999, 53, 1564-1572.	2.3	85
99	Should females prefer dominant males?. Trends in Ecology and Evolution, 1998, 13, 498-501.	8.7	354
100	Experimentally increased badge size increases male competition and reduces male parental care in the collared flycatcher. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1225-1231.	2.6	169
101	Badge size in collared flycatchers predicts outcome of male competition over territories. Animal Behaviour, 1997, 54, 893-899.	1.9	165
102	Trade-offs between life-history traits and a secondary sexual character in male collared flycatchers. Nature, 1995, 375, 311-313.	27.8	316
103	Optimal sperm length for high siring success depends on forehead patch size in collared flycatchers. Behavioral Ecology, 0, , .	2.2	1