
Emilio Chuvieco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/295852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 2010, 221, 46-58.	2.5	392
2	Assessment of different topographic corrections in landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 1056-1061.	6.3	385
3	The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bulletin of the American Meteorological Society, 2013, 94, 1541-1552.	3.3	355
4	Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 2009, 90, 1241-1252.	7.8	339
5	Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sensing of Environment, 1989, 29, 147-159.	11.0	290
6	Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, 2019, 225, 45-64.	11.0	287
7	Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, 2002, 23, 5103-5110.	2.9	278
8	Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology, 2008, 14, 1488-1502.	9.5	275
9	Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 2010, 114, 816-830.	11.0	269
10	Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 2004, 92, 322-331.	11.0	266
11	A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment, 2013, 136, 455-468.	11.0	251
12	Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural and Forest Meteorology, 2004, 124, 269-275.	4.8	231
13	Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment, 2003, 86, 177-186.	11.0	227
14	Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. International Journal of Remote Sensing, 2002, 23, 2145-2162.	2.9	213
15	Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sensing of Environment, 2011, 115, 1003-1012.	11.0	197
16	Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. International Journal of Applied Earth Observation and Geoinformation, 2014, 26, 64-79.	2.8	185
17	A spatio-temporal active-fire clustering approach for global burned area mapping at 250â€⁻m from MODIS data. Remote Sensing of Environment, 2020, 236, 111493.	11.0	183
18	Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 819-826.	6.3	175

#	Article	IF	CITATIONS
19	Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data, 2018, 10, 2015-2031.	9.9	165
20	Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology, 2008, 148, 523-536.	4.8	162
21	Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 2009, 257, 1237-1246.	3.2	162
22	GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sensing of Environment, 2009, 113, 554-562.	11.0	160
23	Evaluation of different topographic correction methods for Landsat imagery. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 691-700.	2.8	156
24	Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sensing of Environment, 2015, 160, 114-121.	11.0	154
25	Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 2015, 24, 77-86.	5.8	147
26	Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sensing of Environment, 2007, 108, 422-435.	11.0	146
27	Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains. Remote Sensing of Environment, 2002, 79, 60-71.	11.0	137
28	Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sensing of Environment, 2011, 115, 1369-1379.	11.0	137
29	Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 2013, 131, 152-159.	11.0	134
30	Integrating geospatial information into fire risk assessment. International Journal of Wildland Fire, 2014, 23, 606.	2.4	134
31	Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sensing of Environment, 2015, 163, 140-152.	11.0	131
32	African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	131
33	Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment, 2004, 92, 345-352.	11.0	130
34	A new global burned area product for climate assessment of fire impacts. Global Ecology and Biogeography, 2016, 25, 619-629.	5.8	122
35	Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina. Journal of Arid Environments, 2002, 52, 121-133.	2.4	120
36	Air temperature estimation with MSC-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula. Remote Sensing of Environment, 2011, 115, 107-116.	11.0	120

#	Article	IF	CITATIONS
37	Mapping and inventory of forest fires from digital processing of tm data. Geocarto International, 1988, 3, 41-53.	3.5	119
38	Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets. Global Change Biology, 2010, 16, 760-770.	9.5	117
39	Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natural Hazards and Earth System Sciences, 2013, 13, 311-327.	3.6	117
40	Fire regime changes and major driving forces in Spain from 1968 to 2010. Environmental Science and Policy, 2014, 37, 11-22.	4.9	115
41	Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Canadian Journal of Forest Research, 2004, 34, 2284-2293.	1.7	114
42	Use of a radiative transfer model to simulate the postfire spectral response to burn severity. Journal of Geophysical Research, 2006, 111, .	3.3	113
43	Integration of linear programming and GIS for land-use modelling. International Journal of Geographical Information Science, 1993, 7, 71-83.	4.8	110
44	Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science, 1996, 10, 333-345.	4.8	109
45	Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sensing of Environment, 2014, 144, 187-196.	11.0	105
46	Applying Local Measures of Spatial Heterogeneity to Landsat-TM Images for Predicting Wildfire Occurrence in Mediterranean Landscapes. Landscape Ecology, 2006, 21, 595-605.	4.2	102
47	Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem. International Journal of Wildland Fire, 2009, 18, 430.	2.4	100
48	Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire, 2007, 16, 341.	2.4	97
49	Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 2002, 32, 1301-1315.	1.7	95
50	Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Current Forestry Reports, 2020, 6, 81-96.	7.4	95
51	Integration of ecological and socioâ€economic factors to assess global vulnerability to wildfire. Global Ecology and Biogeography, 2014, 23, 245-258.	5.8	94
52	Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: Solving the ill-posed inverse problem. Remote Sensing of Environment, 2009, 113, 2403-2411.	11.0	93
53	Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sensing of Environment, 2005, 94, 450-462.	11.0	90
54	Generation of long time series of burn area maps of the boreal forest from NOAA–AVHRR composite data. Remote Sensing of Environment, 2008, 112, 2381-2396.	11.0	88

#	Article	IF	CITATIONS
55	Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sensing of Environment, 2019, 233, 111345.	11.0	87
56	Measuring changes in landscape pattern from satellite images: Short-term effects of fire on spatial diversity. International Journal of Remote Sensing, 1999, 20, 2331-2346.	2.9	86
57	Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, 57-76.	3.3	85
58	Fundamentals of Satellite Remote Sensing. , 0, , .		84
59	Wildfires: Australia needs national monitoring agency. Nature, 2020, 584, 188-191.	27.8	78
60	Modelling Fire Ignition Probability from Satellite Estimates of Live Fuel Moisture Content. Fire Ecology, 2012, 8, 77-97.	3.0	76
61	BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data. Remote Sensing, 2014, 6, 12360-12380.	4.0	76
62	Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sensing, 2017, 9, 1193.	4.0	76
63	Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. International Journal of Wildland Fire, 2007, 16, 390.	2.4	73
64	GLOBAL BURNED-LAND ESTIMATION IN LATIN AMERICA USING MODIS COMPOSITE DATA. , 2008, 18, 64-79.		72
65	Increasing forest fire emissions despite the decline in global burned area. Science Advances, 2021, 7, eabh2646.	10.3	71
66	Multi-scale linkages between topographic attributes and vegetation indices in a mountainous landscape. Remote Sensing of Environment, 2007, 111, 122-134.	11.0	67
67	Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models. Remote Sensing of Environment, 2009, 113, 126-136.	11.0	64
68	Earth Observation of Wildland Fires in Mediterranean Ecosystems. , 2009, , .		64
69	Characterization of canopy fuels using ICESat/GLAS data. Remote Sensing of Environment, 2012, 123, 81-89.	11.0	63
70	Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sensing of Environment, 2008, 112, 3618-3627.	11.0	61
71	Biomass Burning Emissions: A Review of Models Using Remote-Sensing Data. Environmental Monitoring and Assessment, 2005, 104, 189-209.	2.7	59
72	Modeling forest fire danger from geographic information systems. Geocarto International, 1998, 13, 15-23.	3.5	58

#	Article	IF	CITATIONS
73	Temporal Anomalies in Burned Area Trends: Satellite Estimations of the Amazonian 2019 Fire Crisis. Remote Sensing, 2020, 12, 151.	4.0	57
74	Regional estimation of woodland moisture content by inverting Radiative Transfer Models. Remote Sensing of Environment, 2013, 132, 59-70.	11.0	55
75	Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications, 2019, 1, 051005.	2.3	55
76	Anthropogenic effects on global mean fire size. International Journal of Wildland Fire, 2015, 24, 589.	2.4	54
77	Stratification and sample allocation for reference burned area data. Remote Sensing of Environment, 2017, 203, 240-255.	11.0	52
78	A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development, 2017, 10, 4443-4476.	3.6	51
79	Factors affecting environmental sustainability habits of university students: Intercomparison analysis in three countries (Spain, Brazil and UAE). Journal of Cleaner Production, 2018, 198, 1372-1380.	9.3	50
80	Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 57-64.	2.8	47
81	CNN-based burned area mapping using radar and optical data. Remote Sensing of Environment, 2021, 260, 112468.	11.0	46
82	A simple method for Are growth mapping using AVHRR channel 3 data. International Journal of Remote Sensing, 1994, 15, 3141-3146.	2.9	44
83	Monitoring loss of biodiversity in cultural landscapes. New methodology based on satellite data. Landscape and Urban Planning, 2010, 94, 127-140.	7.5	44
84	Remote sensing information for fire management and fire effects assessment. Journal of Geophysical Research, 2007, 112, .	3.3	43
85	Terrestrial laser scanning to estimate plot-level forest canopy fuel properties. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 636-645.	2.8	42
86	Assessment of forest fire danger conditions in southern Spain from NOAA images and meteorological indices. International Journal of Remote Sensing, 2003, 24, 1653-1668.	2.9	41
87	Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Scientific Data, 2019, 6, 155.	5.3	41
88	Human and climate drivers of global biomass burning variability. Science of the Total Environment, 2021, 779, 146361.	8.0	39
89	Dead fuel moisture estimation with MSG–SEVIRI data. Retrieval of meteorological data for the calculation of the equilibrium moisture content. Agricultural and Forest Meteorology, 2010, 150, 861-870.	4.8	38
90	Characterising fire regimes in Spain from fire statistics. International Journal of Wildland Fire, 2013, 22, 296.	2.4	37

#	Article	IF	CITATIONS
91	Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics?. Remote Sensing, 2017, 9, 7.	4.0	37
92	A data mining approach for global burned area mapping. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 39-51.	2.8	36
93	Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa. Remote Sensing, 2020, 12, 334.	4.0	35
94	Wildland Fire Danger Estimation and Mapping. Series in Remote Sensing, 2003, , .	0.1	35
95	Assessment of the potential of SAC-C/MMRS imagery for mapping burned areas in Spain. Remote Sensing of Environment, 2004, 92, 414-423.	11.0	34
96	Improving burning efficiency estimates through satellite assessment of fuel moisture content. Journal of Geophysical Research, 2004, 109, .	3.3	33
97	Global Detection of Long-Term (1982–2017) Burned Area with AVHRR-LTDR Data. Remote Sensing, 2019, 11, 2079.	4.0	33
98	The Influence of Religion on Sustainable Consumption: A Systematic Review and Future Research Agenda. Sustainability, 2020, 12, 7901.	3.2	33
99	Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine. Remote Sensing, 2021, 13, 816.	4.0	33
100	Short-term fire risk: foliage moisture content estimation from satellite data. , 1999, , 17-38.		32
101	Global fire size distribution: from power law to log-normal. International Journal of Wildland Fire, 2016, 25, 403.	2.4	31
102	Burned area mapping with MERIS post-fire image. International Journal of Remote Sensing, 2011, 32, 4175-4201.	2.9	30
103	Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions. Agricultural and Forest Meteorology, 2012, 162-163, 35-43.	4.8	30
104	Assessing the Temporal Stability of the Accuracy of a Time Series of Burned Area Products. Remote Sensing, 2014, 6, 2050-2068.	4.0	30
105	Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences, 2016, 13, 2061-2076.	3.3	30
106	Using long temporal reference units to assess the spatial accuracy of global satellite-derived burned area products. Remote Sensing of Environment, 2022, 269, 112823.	11.0	29
107	Monitoring transparency in inland water bodies using multispectral images. International Journal of Remote Sensing, 2009, 30, 1567-1586.	2.9	28
108	Simulation Approaches for Burn Severity Estimation Using Remotely Sensed Images. Fire Ecology, 2007, 3, 129-150.	3.0	27

#	Article	IF	CITATIONS
109	Generation of a Species-Specific Look-Up Table for Fuel Moisture Content Assessment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2, 21-26.	4.9	27
110	Automatic Burned Land Mapping From MODIS Time Series Images: Assessment in Mediterranean Ecosystems. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 3401-3413.	6.3	27
111	Development of a standard database of reference sites for validating global burned area products. Earth System Science Data, 2020, 12, 3229-3246.	9.9	27
112	Wildfire Frequency-Area Statistics in Spain. Procedia Environmental Sciences, 2011, 7, 182-187.	1.4	26
113	A comparison of remotely-sensed and inventory datasets for burned area in Mediterranean Europe. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101887.	2.8	25
114	Religious approaches to water management and environmental conservation. Water Policy, 2012, 14, 9-20.	1.5	23
115	Integration of Physical and Human Factors in Fire Danger Assessment. Series in Remote Sensing, 2003, , 197-218.	0.1	22
116	Earth Observation of Global Change. , 2008, , .		21
117	Accuracy Assessment of Burned Area Products in the Orinoco Basin. Photogrammetric Engineering and Remote Sensing, 2012, 78, 53-60.	0.6	21
118	Development of a consistent global long-term burned area product (1982–2018) based on AVHRR-LTDR data. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102473.	2.8	21
119	Consistency of Satellite Climate Data Records for Earth System Monitoring. Bulletin of the American Meteorological Society, 2020, 101, E1948-E1971.	3.3	21
120	Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. Science of the Total Environment, 2022, 845, 157139.	8.0	20
121	Fuel Loads and Fuel Type Mapping. Series in Remote Sensing, 2003, , 119-142.	0.1	18
122	Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire, 2021, 4, 59.	2.8	18
123	Development and mapping of fuel characteristics and associated fire potentials for South America. International Journal of Wildland Fire, 2014, 23, 643.	2.4	17
124	Fire Danger Observed from Space. Surveys in Geophysics, 2020, 41, 1437-1459.	4.6	17
125	A Preliminary Global Automatic Burned-Area Algorithm at Medium Resolution in Google Earth Engine. Remote Sensing, 2021, 13, 4298.	4.0	17
126	Implementation of the Burned Area Component of the Copernicus Climate Change Service: From MODIS to OLCI Data. Remote Sensing, 2021, 13, 4295.	4.0	17

#	Article	IF	CITATIONS
127	Fire Behavior Simulation from Global Fuel and Climatic Information. Forests, 2017, 8, 179.	2.1	16
128	Remote sensing and geographic information systems methods for global spatiotemporal modeling of biomass burning emissions: Assessment in the African continent. Journal of Geophysical Research, 2004, 109, .	3.3	13
129	Regional-scale burnt area mapping in Southern Europe using NOAA-AVHRR 1 km data. , 1999, , 139-155.		12
130	AVHRR multitemporal compositing techniques for burned land mapping. International Journal of Remote Sensing, 2005, 26, 1013-1018.	2.9	12
131	Advances in remote sensing and GIS applications in support of forest fire management. International Journal of Wildland Fire, 2014, 23, 603.	2.4	12
132	Impacts of Religious Beliefs on Environmental Indicators. Worldviews: Environment, Culture, Religion, 2016, 20, 251-271.	0.1	12
133	Spatial Distribution of Forest Fire Emissions: A Case Study in Three Mexican Ecoregions. Remote Sensing, 2019, 11, 1185.	4.0	12
134	Satellite Observation of Biomass Burning. , 2008, , 109-142.		12
135	Global Impacts of Fire. , 2009, , 1-10.		12
136	Visual versus digital analysis for vegetation mapping: Some examples on central Spain. Geocarto International, 1990, 5, 21-30.	3.5	11
137	Analysis of Trends in the FireCCI Global Long Term Burned Area Product (1982–2018). Fire, 2021, 4, 74.	2.8	10
138	Foliage moisture content estimation from one-dimensional and two-dimensional spectroradiometry for fire danger assessment. Journal of Geophysical Research, 2006, 111, .	3.3	9
139	Estimation of Live Fuel Moisture Content. Series in Remote Sensing, 2003, , 63-90.	0.1	8
140	Fire Regime Characteristics along Environmental Gradients in Spain. Forests, 2016, 7, 262.	2.1	8
141	Temporal Decorrelation of C-Band Backscatter Coefficient in Mediterranean Burned Areas. Remote Sensing, 2019, 11, 2661.	4.0	8
142	Evaluation of the Influence of Local Fuel Homogeneity on Fire Hazard through Landsat-5 TM Texture Measures. Photogrammetric Engineering and Remote Sensing, 2010, 76, 853-864.	0.6	7
143	Beyond Carbon Footprint Calculators. New Approaches for Linking Consumer Behaviour and Climate Action. Sustainability, 2020, 12, 6529.	3.2	7
144	Links between Climate Change Knowledge, Perception and Action: Impacts on Personal Carbon Footprint. Sustainability, 2021, 13, 8088.	3.2	7

#	Article	IF	CITATIONS
145	Estimation of Fuel Conditions for Fire Danger Assessment. , 2009, , 83-96.		7
146	Advances in Earth Observation of Global Change. , 2010, , .		7
147	Relations Between Human Factors and Global Fire Activity. , 2010, , 187-199.		6
148	Impact of Religious Affiliation on Ethical Values of Spanish Environmental Activists. Religions, 2016, 7, 46.	0.6	6
149	Characterizing Clobal Fire Regimes from Satellite-Derived Products. Forests, 2022, 13, 699.	2.1	6
150	CartografÃa de combustible y potenciales de incendio en el Continente Africano utilizando FCCS. Revista De Teledeteccion, 2015, , 1.	0.6	5
151	Analysis of seismic vulnerability using remote sensing and GIS techniques. International Journal of Emergency Management, 2003, 1, 319.	0.0	3
152	Validation of low spatial resolution and no-dichotomy global long-term burned area product by Pareto boundary. , 2021, , .		3
153	Burn severity and regeneration in large forest fires: an analysis from Landsat time series. Revista De Teledeteccion, 2017, , 17.	0.6	3
154	Laboratory Measurements of Plant Drying. Photogrammetric Engineering and Remote Sensing, 2014, 80, 451-459.	0.6	2
155	Special issue on earth observation of essential climate variables. Remote Sensing of Environment, 2017, 203, 1.	11.0	2
156	NASA Earth Observation Satellite Missions for Global Change Research. , 2008, , 23-47.		2
157	Insights into burned areas detection from Sentinel-1 data and locally adaptive algorithms. , 2018, , .		2
158	Estimación del contenido de agua a partir de mediciones hiperespectrales para cartografÃa del riesgo de incendio. Cuadernos De Investigacion Geografica, 2014, 40, 295.	1.1	2
159	Inventory and Analysis of Environmental Sustainability Education in the Degrees of the University of Alcalá (Spain). Sustainability, 2022, 14, 8310.	3.2	2
160	Religion and science: boost sustainability. Nature, 2016, 538, 459-459.	27.8	1
161	Assessing Loss of Biodiversity in Europe Through Remote Sensing: The Necessity of New Methodologies. , 0, , .		1
162	Effects of sample size on burned areas accuracy estimates in the Amazon Basin. , 2018, , .		1

Емігіо Сничіесо

#	Article	IF	CITATIONS
163	Introduction to the Issue on Wildland Fires and Biomass Burning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1, 218-219.	4.9	0
164	The ESA climate change initiative: Merging burned area estimates for the Fire Essential Climate Variable. , 2012, , .		0
165	Appointments and retirements of associate editors and editorial board members. Remote Sensing of Environment, 2017, 188, A1.	11.0	0
166	Global analysis of burned areas for climate assessment: experiences from the Fire_CCI project. , 2019, ,		0
167	Fire Reference Perimeters Extracted from Sentinel-2 Data for Validation of Burned Area Products in Africa Biomes. , 2021, , .		0
168	Association Between Fire Causative Agents Within Land Cover Types and Global Fire Occurrence. Lecture Notes in Geoinformation and Cartography, 2013, , 269-283.	1.0	0
169	Temporal backscattering coefficient decorrelation in burned areas. , 2018, , .		0
170	Optimum Sentinel-1 Pixel Spacing for Burned Area Mapping. , 2020, , .		0
171	Basis for Analyzing EO Satellite Images. , 2020, , 113-130.		0
172	Evaluation of backscatter coefficient temporal indices for burned area mapping. , 2019, , .		0
173	Physical Principles of Remote Sensing. , 2020, , 21-58.		0
174	Reply to Giglio et al. Comment on "Otón et al. Analysis of Trends in the FireCCI Global Long Term Burned Area Product (1982–2018). Fire 2021, 4, 74― Fire, 2022, 5, 56.	2.8	0
175	Examining the Relationships between Religious Affiliation, External and Internal Behavioural Factors, and Personal Carbon Footprint. Religions, 2022, 13, 416.	0.6	0