
Alexander Donath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/295641/publications.pdf Version: 2024-02-01

ALEXANDER DONATH

#	Article	IF	CITATIONS
1	MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 2013, 69, 313-319.	2.7	3,919
2	Phylogenomics resolves the timing and pattern of insect evolution. Science, 2014, 346, 763-767.	12.6	2,096
3	Evolutionary History of the Hymenoptera. Current Biology, 2017, 27, 1013-1018.	3.9	611
4	The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24729-24737.	7.1	372
5	Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 2019, 47, 10543-10552.	14.5	324
6	The expansion of the metazoan microRNA repertoire. BMC Genomics, 2006, 7, 25.	2.8	304
7	Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the United States of America, 2019, 116, 22657-22663.	7.1	291
8	Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12775-12780.	7.1	275
9	Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Research, 2012, 40, 2833-2845.	14.5	218
10	A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Molecular Phylogenetics and Evolution, 2013, 69, 352-364.	2.7	183
11	Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3024-3029.	7.1	150
12	The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evolutionary Biology, 2014, 14, 52.	3.2	147
13	Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics, 2017, 18, 111.	2.6	146
14	An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182076.	2.6	143
15	Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera. Current Biology, 2012, 22, 1309-1313.	3.9	140
16	Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathogens, 2019, 15, e1008224.	4.7	101
17	Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects. Genome Biology and Evolution, 2016, 8, evw281.	2.5	92
18	Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). Molecular Phylogenetics and Evolution, 2017, 116, 213-226.	2.7	87

Alexander Donath

#	Article	IF	CITATIONS
19	Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution, 2018, 120, 286-296.	2.7	83
20	Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communications, 2020, 11, 4939.	12.8	82
21	Old World and New World Phasmatodea: Phylogenomics Resolve the Evolutionary History of Stick and Leaf Insects. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	80
22	Evolution of 7SK RNA and Its Protein Partners in Metazoa. Molecular Biology and Evolution, 2009, 26, 2821-2830.	8.9	76
23	BaitFisher: A Software Package for Multispecies Target DNA Enrichment Probe Design. Molecular Biology and Evolution, 2016, 33, 1875-1886.	8.9	71
24	Mitogenomics at the base of Metazoa. Molecular Phylogenetics and Evolution, 2013, 69, 339-351.	2.7	70
25	New data, same story: phylogenomics does not support Syrphoidea (Diptera: Syrphidae, Pipunculidae). Systematic Entomology, 2018, 43, 447-459.	3.9	53
26	Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biological Reviews, 2018, 93, 2006-2020.	10.4	51
27	An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology, 2020, 20, 64.	3.2	48
28	Convergently Evolved Toxic Secondary Metabolites in Plants Drive the Parallel Molecular Evolution of Insect Resistance. American Naturalist, 2017, 190, S29-S43.	2.1	42
29	The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 2017, 17, 269.	3.2	40
30	Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Molecular Phylogenetics and Evolution, 2019, 135, 270-285.	2.7	36
31	Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evolution, 2021, 7, veab030.	4.9	35
32	Evolutionary history and divergence times of Odonata (dragonflies and damselflies) revealed through transcriptomics. IScience, 2021, 24, 103324.	4.1	25
33	Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects. BMC Genomics, 2016, 17, 861.	2.8	23
34	Beyond Drosophila: resolving the rapid radiation of schizophoran flies with phylotranscriptomics. BMC Biology, 2021, 19, 23.	3.8	22
35	Response to Comment on "Phylogenomics resolves the timing and pattern of insect evolutionâ€. Science, 2015, 349, 487-487.	12.6	17
36	No signal of deleterious mutation accumulation in conserved gene sequences of extant asexual hexapods. Scientific Reports, 2019, 9, 5338.	3.3	17

ALEXANDER DONATH

#	Article	IF	CITATIONS
37	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	2.5	17
38	ABCB transporters in a leaf beetle respond to sequestered plant toxins. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201311.	2.6	16
39	Phylogenomics changes our understanding about earwig evolution. Systematic Entomology, 2020, 45, 516-526.	3.9	15
40	Identification of scavenger receptors and thrombospondinâ€ŧypeâ€1 repeat proteins potentially relevant for plastid recognition in Sacoglossa. Ecology and Evolution, 2020, 10, 12348-12363.	1.9	13
41	Four myriapod relatives – but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evolutionary Biology, 2020, 20, 144.	3.2	13
42	Split-inducing indels in phylogenomic analysis. Algorithms for Molecular Biology, 2018, 13, 12.	1.2	11
43	Robust reference gene design and validation for expression studies in the large milkweed bug, Oncopeltus fasciatus, upon cardiac glycoside stress. Gene, 2019, 710, 66-75.	2.2	10
44	Cladobranchia (Gastropoda, Nudibranchia) as a Promising Model to Understand the Molecular Evolution of Photosymbiosis in Animals. Frontiers in Marine Science, 2022, 8, .	2.5	10
45	Analysis of RNA-Seq, DNA Target Enrichment, and Sanger Nucleotide Sequence Data Resolves Deep Splits in the Phylogeny of Cuckoo Wasps (Hymenoptera: Chrysididae). Insect Systematics and Diversity, 2021, 5, .	1.7	8
46	25 Molecular morphology: Higher order characters derivable from sequence information. , 2014, , 549-562.		5
47	Transcriptomics provides a robust framework for the relationships of the major clades of cladobranch sea slugs (Mollusca, Gastropoda, Heterobranchia), but fails to resolve the position of the enigmatic genus Embletonia. Bmc Ecology and Evolution, 2021, 21, 226.	1.6	5
48	The complete mitochondrial genome of the †̃solar-powered' sea slug Plakobranchus cf. ocellatus (Heterobranchia: Panpulmonata: Sacoglossa). Mitochondrial DNA Part B: Resources, 2017, 2, 130-131.	0.4	4
49	The complete mitochondrial genome of the photosymbiotic sea slug <i>Berghia stephanieae</i> (Valdés, 2005) (Gastropoda, Nudibranchia). Mitochondrial DNA Part B: Resources, 2021, 6, 2281-2284.	0.4	4
50	Midgut transcriptome assessment of the cockroach-hunting wasp Ampulex compressa (Apoidea:) Tj ETQq0 0 0	rgB <u>T</u> /Over	rlock 10 Tf 50
51	Deletion analysis of the 3′ long terminal repeat sequence of plant retrotransposon Tto1 identifies 125	24	1

51	base pairs redundancy as sufficient for first strand transfer. Virology, 2011, 412, 75-82.	2.4	1
52	Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera. Current Biology, 2013, 23, 1388.	3.9	1