Christina Boucher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/295476/publications.pdf

Version: 2024-02-01

44 papers 1,674 citations

430874 18 h-index 36 g-index

47 all docs

47 docs citations

47 times ranked

2355 citing authors

#	Article	IF	CITATIONS
1	MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Research, 2017, 45, D574-D580.	14.5	328
2	MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Research, 2020, 48, D561-D569.	14.5	227
3	Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain. Applied and Environmental Microbiology, 2016, 82, 2433-2443.	3.1	132
4	Succinct colored de Bruijn graphs. Bioinformatics, 2017, 33, 3181-3187.	4.1	99
5	Investigating Effects of Tulathromycin Metaphylaxis on the Fecal Resistome and Microbiome of Commercial Feedlot Cattle Early in the Feeding Period. Frontiers in Microbiology, 2018, 9, 1715.	3.5	78
6	The SLOW GROWTH3 Pentatricopeptide Repeat Protein Is Required for the Splicing of Mitochondrial <i>NADH Dehydrogenase Subunit7</i> Intron 2 in Arabidopsis. Plant Physiology, 2015, 168, 490-501.	4.8	73
7	Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-COV-2 infections unreliable. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12522-12523.	7.1	68
8	Data structures based on $\langle i \rangle k \langle i \rangle$ -mers for querying large collections of sequencing data sets. Genome Research, 2021, 31, 1-12.	5 . 5	67
9	Characterization of the Microbial Resistome in Conventional and "Raised Without Antibiotics―Beef and Dairy Production Systems. Frontiers in Microbiology, 2019, 10, 1980.	3.5	58
10	Building large updatable colored de Bruijn graphs via merging. Bioinformatics, 2019, 35, i51-i60.	4.1	42
11	Misassembly detection using paired-end sequence reads and optical mapping data. Bioinformatics, 2015, 31, i80-i88.	4.1	41
12	Variable-Order de Bruijn Graphs. , 2015, , .		39
13	Efficient Construction of a Complete Index for Pan-Genomics Read Alignment. Journal of Computational Biology, 2020, 27, 500-513.	1.6	35
14	Mobilization of Antibiotic Resistance: Are Current Approaches for Colocalizing Resistomes and Mobilomes Useful?. Frontiers in Microbiology, 2020, 11, 1376.	3.5	33
15	Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences. Communications Biology, 2019, 2, 294.	4.4	31
16	Sequencing Technologies and Analyses: Where Have We Been and Where Are We Going?. IScience, 2019, 18, 37-41.	4.1	31
17	Genomic Comparison Reveals Natural Occurrence of Clinically Relevant Multidrug-Resistant Extended-Spectrum-Î ² -Lactamase-Producing Escherichia coli Strains. Applied and Environmental Microbiology, 2019, 85, .	3.1	29
18	A Cautionary Report for Pathogen Identification Using Shotgun Metagenomics; A Comparison to Aerobic Culture and Polymerase Chain Reaction for Salmonella enterica Identification. Frontiers in Microbiology, 2019, 10, 2499.	3.5	27

#	Article	IF	CITATIONS
19	Targeted Enrichment for Pathogen Detection and Characterization in Three Felid Species. Journal of Clinical Microbiology, 2017, 55, 1658-1670.	3.9	25
20	MONI: A Pangenomic Index for Finding Maximal Exact Matches. Journal of Computational Biology, 2022, 29, 169-187.	1.6	23
21	Computational graph pangenomics: a tutorial on data structures and their applications. Natural Computing, 2022, 21, 81-108.	3.0	22
22	Practical dynamic de Bruijn graphs. Bioinformatics, 2018, 34, 4189-4195.	4.1	18
23	Pan-genomic matching statistics for targeted nanopore sequencing. IScience, 2021, 24, 102696.	4.1	15
24	aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events. PLoS ONE, 2016, 11, e0160645.	2.5	14
25	Error correcting optical mapping data. GigaScience, 2018, 7, .	6.4	14
26	Counting motifs in dynamic networks. BMC Systems Biology, 2018, 12, 6.	3.0	11
27	Succinct dynamic de Bruijn graphs. Bioinformatics, 2021, 37, 1946-1952.	4.1	8
28	Propensity score synthetic augmentation matching using generative adversarial networks (PSSAM-GAN). Computer Methods and Programs in Biomedicine Update, 2021, 1, 100020.	3.7	8
29	Metagenome SNP calling via read-colored de Bruijn graphs. Bioinformatics, 2021, 36, 5275-5281.	4.1	8
30	AMR-meta: a $\langle i \rangle$ k $\langle i \rangle$ -mer and metafeature approach to classify antimicrobial resistance from high-throughput short-read metagenomics data. GigaScience, 2022, 11, .	6.4	8
31	PFP Compressed Suffix Trees. , 2021, 2021, 60-72.		7
32	Kohdista: an efficient method to index and query possible Rmap alignments. Algorithms for Molecular Biology, 2019, 14, 25.	1.2	6
33	Matching Reads to Many Genomes with the r-Index. Journal of Computational Biology, 2020, 27, 514-518.	1.6	6
34	Buffering updates enables efficient dynamic de Bruijn graphs. Computational and Structural Biotechnology Journal, 2021, 19, 4067-4078.	4.1	6
35	Fast and accurate correction of optical mapping data via spaced seeds. Bioinformatics, 2020, 36, 682-689.	4.1	5
36	Genome Sequences of Strain ATCC 29281 and Pin and Northern Red Oak Isolates of Lonsdalea quercina subsp. <i>quercina /i>. Genome Announcements, 2014, 2, .</i>	0.8	4

3

#	Article	IF	CITATIONS
37	Aligning optical maps to de Bruijn graphs. Bioinformatics, 2019, 35, 3250-3256.	4.1	4
38	Finding Maximal Exact Matches Using the r-Index. Journal of Computational Biology, 2022, 29, 188-194.	1.6	4
39	Exploring Prediction of Antimicrobial Resistance Based on Protein Solvent Accessibility Variation. Frontiers in Genetics, 2021, 12, 564186.	2.3	3
40	Towards routine employment of computational tools for antimicrobial resistance determination via high-throughput sequencing. Briefings in Bioinformatics, 2022, 23, .	6.5	3
41	Syotti: scalable bait design for DNA enrichment. Bioinformatics, 2022, 38, i177-i184.	4.1	3
42	Fast and efficient Rmap assembly using the Bi-labelled de Bruijn graph. Algorithms for Molecular Biology, 2021, 16, 6.	1.2	2
43	Fast and exact quantification of motif occurrences in biological sequences. BMC Bioinformatics, 2021, 22, 445.	2.6	2
44	On the Hardness of Counting and Sampling Center Strings. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1843-1846.	3.0	0