Stephen Jesse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2954485/publications.pdf Version: 2024-02-01

STEDHEN LESSE

#	Article	IF	CITATIONS
1	Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnology, 2010, 5, 749-754.	31.5	513
2	Polarization Control of Electron Tunneling into Ferroelectric Surfaces. Science, 2009, 324, 1421-1425.	12.6	441
3	The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology, 2007, 18, 435503.	2.6	413
4	Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Applied Physics Letters, 2006, 88, 062908.	3.3	371
5	Deterministic control of ferroelastic switching in multiferroic materials. Nature Nanotechnology, 2009, 4, 868-875.	31.5	331
6	Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nature Physics, 2012, 8, 81-88.	16.7	324
7	In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2005, 81, 223-240.	2.3	300
8	Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. ACS Nano, 2017, 11, 12742-12752.	14.6	282
9	Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Materials, 2008, 7, 209-215.	27.5	250
10	Ferroelectric or non-ferroelectric: Why so many materials exhibit "ferroelectricity―on the nanoscale. Applied Physics Reviews, 2017, 4, .	11.3	240
11	Measuring oxygen reduction/evolution reactions on the nanoscale. Nature Chemistry, 2011, 3, 707-713.	13.6	233
12	Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution. Nano Letters, 2010, 10, 3420-3425.	9.1	232
13	Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. ACS Nano, 2015, 9, 6484-6492.	14.6	231
14	Vector Piezoresponse Force Microscopy. Microscopy and Microanalysis, 2006, 12, 206-220.	0.4	228
15	Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy. Annual Review of Materials Research, 2007, 37, 189-238.	9.3	204
16	Quantitative mapping of switching behavior in piezoresponse force microscopy. Review of Scientific Instruments, 2006, 77, 073702.	1.3	193
17	Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nature Materials, 2018, 17, 1013-1019.	27.5	183
18	A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2226-2252.	3.0	170

#	Article	IF	CITATIONS
19	Band excitation in scanning probe microscopy: sines of change. Journal Physics D: Applied Physics, 2011, 44, 464006.	2.8	150
20	Nanoscale Switching Characteristics of Nearly Tetragonal BiFeO ₃ Thin Films. Nano Letters, 2010, 10, 2555-2561.	9.1	149
21	Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites. Nano Letters, 2016, 16, 3630-3637.	9.1	142
22	Tunable quadruple-well ferroelectric van der Waals crystals. Nature Materials, 2020, 19, 43-48.	27.5	140
23	Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nature Physics, 2014, 10, 59-66.	16.7	129
24	In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Applied Physics Letters, 2003, 83, 1851-1853.	3.3	127
25	Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity. ACS Nano, 2014, 8, 10229-10236.	14.6	123
26	Nanoscale Ferroelectricity in Crystalline γ lycine. Advanced Functional Materials, 2012, 22, 2996-3003.	14.9	119
27	Placing single atoms in graphene with a scanning transmission electron microscope. Applied Physics Letters, 2017, 111, .	3.3	119
28	Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor. Applied Physics Letters, 2006, 89, 022906.	3.3	117
29	Nanoscale Elastic Changes in 2D Ti ₃ C ₂ T _{<i>x</i>} (MXene) Pseudocapacitive Electrodes. Advanced Energy Materials, 2016, 6, 1502290.	19.5	117
30	Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation. ACS Nano, 2016, 10, 8376-8384.	14.6	113
31	Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. Npj Computational Materials, 2019, 5, .	8.7	113
32	Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology, 2009, 20, 085714.	2.6	112
33	Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7219-7224.	7.1	112
34	The Role of Electrochemical Phenomena in Scanning Probe Microscopy of Ferroelectric Thin Films. ACS Nano, 2011, 5, 5683-5691.	14.6	109
35	Substrate Clamping Effects on Irreversible Domain Wall Dynamics in Lead Zirconate Titanate Thin Films. Physical Review Letters, 2012, 108, 157604.	7.8	109
36	Dynamic behaviour in piezoresponse force microscopy. Nanotechnology, 2006, 17, 1615-1628.	2.6	108

#	Article	IF	CITATIONS
37	Big, Deep, and Smart Data in Scanning Probe Microscopy. ACS Nano, 2016, 10, 9068-9086.	14.6	103
38	Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS Nano, 2016, 10, 5600-5618.	14.6	99
39	Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nature Physics, 2017, 13, 812-818.	16.7	98
40	Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy. Nature Communications, 2014, 5, 3871.	12.8	97
41	Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging. Annual Review of Physical Chemistry, 2014, 65, 519-536.	10.8	97
42	Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale. ACS Nano, 2010, 4, 7349-7357.	14.6	96
43	Electromechanical imaging of biological systems with sub-10nm resolution. Applied Physics Letters, 2005, 87, 053901.	3.3	93
44	Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology, 2016, 27, 425707.	2.6	92
45	Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films. Applied Physics Letters, 2007, 90, 122904.	3.3	91
46	Probing the Role of Single Defects on the Thermodynamics of Electric-Field Induced Phase Transitions. Physical Review Letters, 2008, 100, 155703.	7.8	83
47	Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bulletin, 2012, 37, 651-658.	3.5	83
48	Reduced Coercive Field in BiFeO ₃ Thin Films Through Domain Engineering. Advanced Materials, 2011, 23, 669-672.	21.0	82
49	Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams. Scientific Reports, 2016, 6, 30481.	3.3	82
50	Building Structures Atom by Atom via Electron Beam Manipulation. Small, 2018, 14, e1801771.	10.0	81
51	High Resolution Electromechanical Imaging of Ferroelectric Materials in a Liquid Environment by Piezoresponse Force Microscopy. Physical Review Letters, 2006, 96, 237602.	7.8	80
52	Electromechanical detection in scanning probe microscopy: Tip models and materials contrast. Journal of Applied Physics, 2007, 102, .	2.5	80
53	Fire up the atom forge. Nature, 2016, 539, 485-487.	27.8	79
54	Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Physical Review B, 2010, 81, .	3.2	77

#	Article	IF	CITATIONS
55	Nanoscale Control of Phase Variants in Strain-Engineered BiFeO ₃ . Nano Letters, 2011, 11, 3346-3354.	9.1	76
56	Ionically-Mediated Electromechanical Hysteresis in Transition Metal Oxides. ACS Nano, 2012, 6, 7026-7033.	14.6	75
57	Carrier density modulation in a germanium heterostructure by ferroelectric switching. Nature Communications, 2015, 6, 6067.	12.8	75
58	Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets. Advanced Structural and Chemical Imaging, 2015, 1, 6.	4.0	74
59	Enhancing Ion Migration in Grain Boundaries of Hybrid Organic–Inorganic Perovskites by Chlorine. Advanced Functional Materials, 2017, 27, 1700749.	14.9	74
60	Threeâ€State Ferroelastic Switching and Large Electromechanical Responses in PbTiO ₃ Thin Films. Advanced Materials, 2017, 29, 1702069.	21.0	74
61	Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. Proceedings of the United States of America, 2007, 104, 20204-20209.	7.1	73
62	Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. Journal of Applied Physics, 2007, 102, 114108.	2.5	73
63	Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics. Applied Physics Letters, 2008, 93, .	3.3	73
64	Li-ion dynamics and reactivity on the nanoscale. Materials Today, 2011, 14, 548-558.	14.2	73
65	Deep Data Analysis of Conductive Phenomena on Complex Oxide Interfaces: Physics from Data Mining. ACS Nano, 2014, 8, 6449-6457.	14.6	73
66	Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. Small, 2015, 11, 5895-5900.	10.0	73
67	Atom-by-atom fabrication with electron beams. Nature Reviews Materials, 2019, 4, 497-507.	48.7	73
68	Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy. Nanotechnology, 2006, 17, 3400-3411.	2.6	71
69	Ultrathin limit and dead-layer effects in local polarization switching of BiFeO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2012, 85, .</mml:math 	3.2	71
70	Mapping Irreversible Electrochemical Processes on the Nanoscale: Ionic Phenomena in Li Ion Conductive Glass Ceramics. Nano Letters, 2011, 11, 4161-4167.	9.1	70
71	Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study. Science Advances, 2019, 5, eaaw8989.	10.3	70
72	Nonlinear Phenomena in Multiferroic Nanocapacitors: Joule Heating and Electromechanical Effects. ACS Nano, 2011, 5, 9104-9112.	14.6	69

#	Article	IF	CITATIONS
73	Locally Controlled Cu-Ion Transport in Layered Ferroelectric CuInP ₂ S ₆ . ACS Applied Materials & Interfaces, 2018, 10, 27188-27194.	8.0	68
74	Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. ACS Nano, 2017, 11, 8717-8729.	14.6	67
75	Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. Ultramicroscopy, 2006, 106, 334-340.	1.9	66
76	Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology, 2010, 21, 405703.	2.6	66
77	Influence of a Single Grain Boundary on Domain Wall Motion in Ferroelectrics. Advanced Functional Materials, 2014, 24, 1409-1417.	14.9	66
78	Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite. Advanced Functional Materials, 2009, 19, 2053-2063.	14.9	65
79	Correlated polarization switching in the proximity of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>180</mml:mn><ml:mo>°don wall_Physical Review B_2010_82</ml:mo></mml:mrow></mml:math 	nain ^{3,2}	65
80	Probing Surface and Bulk Electrochemical Processes on the LaAlO ₃ –SrTiO ₃ Interface. ACS Nano, 2012, 6, 3841-3852.	14.6	65
81	Open loop Kelvin probe force microscopy with single and multi-frequency excitation. Nanotechnology, 2013, 24, 475702.	2.6	63
82	Identification of phases, symmetries and defects through local crystallography. Nature Communications, 2015, 6, 7801.	12.8	63
83	Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. Journal of Applied Physics, 2005, 98, 044503.	2.5	62
84	Defectâ€Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control. Advanced Materials, 2010, 22, 314-322.	21.0	62
85	Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study. ACS Nano, 2011, 5, 9682-9695.	14.6	61
86	Current and surface charge modified hysteresis loops in ferroelectric thin films. Journal of Applied Physics, 2015, 118, .	2.5	60
87	Local Detection of Activation Energy for Ionic Transport in Lithium Cobalt Oxide. Nano Letters, 2012, 12, 3399-3403.	9.1	58
88	Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Applied Physics Letters, 2009, 94, .	3.3	57
89	Watching domains grow: <i>In-situ</i> studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. Journal of Applied Physics, 2011, 110, .	2.5	57
90	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. Advanced Materials, 2008, 20, 109-114.	21.0	56

#	Article	IF	CITATIONS
91	Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy. Applied Physics Letters, 2012, 101, .	3.3	55
92	Probing Local Ionic Dynamics in Functional Oxides at the Nanoscale. Nano Letters, 2013, 13, 3455-3462.	9.1	55
93	Mechanical Control of Electroresistive Switching. Nano Letters, 2013, 13, 4068-4074.	9.1	55
94	Synergetic effects of K ⁺ and Mg ²⁺ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti ₃ C ₂ MXene. Faraday Discussions, 2017, 199, 393-403.	3.2	55
95	Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. Science Advances, 2018, 4, eaap8672.	10.3	54
96	Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology, 2007, 18, 405701.	2.6	51
97	Electromechanical imaging of biomaterials by scanning probe microscopy. Journal of Structural Biology, 2006, 153, 151-159.	2.8	50
98	First-Order Reversal Curve Probing of Spatially Resolved Polarization Switching Dynamics in Ferroelectric Nanocapacitors. ACS Nano, 2012, 6, 491-500.	14.6	50
99	Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface. Applied Physics Letters, 2014, 104, .	3.3	50
100	Local bias-induced phase transitions. Materials Today, 2008, 11, 16-27.	14.2	49
101	Intrinsic Nucleation Mechanism and Disorder Effects in Polarization Switching on Ferroelectric Surfaces. Physical Review Letters, 2009, 102, 017601.	7.8	49
102	Direct Probing of Charge Injection and Polarization ontrolled Ionic Mobility on Ferroelectric LiNbO ₃ Surfaces. Advanced Materials, 2014, 26, 958-963.	21.0	49
103	Complete information acquisition in dynamic force microscopy. Nature Communications, 2015, 6, 6550.	12.8	49
104	Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano, 2021, 15, 12604-12627.	14.6	49
105	Time-Resolved Electronic Phase Transitions in Manganites. Physical Review Letters, 2009, 102, 087201.	7.8	48
106	Space- and Time-Resolved Mapping of Ionic Dynamic and Electroresistive Phenomena in Lateral Devices. ACS Nano, 2013, 7, 6806-6815.	14.6	48
107	Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres. Applied Surface Science, 2000, 168, 251-257.	6.1	47
108	Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions. Journal of Applied Physics, 2010, 108, .	2.5	47

#	Article	IF	CITATIONS
109	Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer-Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization–Mass Spectrometry. ACS Nano, 2011, 5, 5526-5531.	14.6	47
110	Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space. Scientific Reports, 2016, 6, 30557.	3.3	47
111	Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. Physical Review Materials, 2019, 3, .	2.4	47
112	Controlling Polarization Dynamics in a Liquid Environment: From Localized to Macroscopic Switching in Ferroelectrics. Physical Review Letters, 2007, 98, 247603.	7.8	46
113	Compositional disorder, polar nanoregions and dipole dynamics in Pb(Mg _{1/3} Nb _{2/3})O ₃ -based relaxor ferroelectrics. Zeitschrift Für Kristallographie, 2011, 226, 99-107.	1.1	46
114	Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. Nanotechnology, 2018, 29, 255303.	2.6	46
115	Designing piezoelectric films for micro electromechanical systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1782-1792.	3.0	45
116	Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe. Applied Physics Letters, 2008, 93, 073104.	3.3	43
117	Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. Nanotechnology, 2017, 28, 065704.	2.6	43
118	Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy. Npj Computational Materials, 2019, 5, .	8.7	43
119	Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. Nanotechnology, 2009, 20, 395709.	2.6	42
120	Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite. Nanoscale, 2012, 4, 3175.	5.6	42
121	Domain Wall Motion Across Various Grain Boundaries in Ferroelectric Thin Films. Journal of the American Ceramic Society, 2015, 98, 1848-1857.	3.8	42
122	Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment. Nanotechnology, 2007, 18, 424020.	2.6	41
123	Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution. Journal of the Electrochemical Society, 2011, 158, A982.	2.9	41
124	Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy. ACS Nano, 2015, 9, 11784-11791.	14.6	41
125	Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis. Nano Letters, 2016, 16, 5574-5581.	9.1	40
126	Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. Journal of Materials Science, 2009, 44, 5095-5101.	3.7	38

#	Article	IF	CITATIONS
127	Kelvin probe force microscopy in liquid using electrochemical force microscopy. Beilstein Journal of Nanotechnology, 2015, 6, 201-214.	2.8	38
128	Time-Resolved Electrical Scanning Probe Microscopy of Layered Perovskites Reveals Spatial Variations in Photoinduced Ionic and Electronic Carrier Motion. ACS Nano, 2019, 13, 2812-2821.	14.6	38
129	Exploring order parameters and dynamic processes in disordered systems via variational autoencoders. Science Advances, 2021, 7, .	10.3	38
130	Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment. ACS Nano, 2010, 4, 689-698.	14.6	37
131	Probing Local Bias-Induced Transitions Using Photothermal Excitation Contact Resonance Atomic Force Microscopy and Voltage Spectroscopy. ACS Nano, 2015, 9, 1848-1857.	14.6	37
132	Manifold learning of four-dimensional scanning transmission electron microscopy. Npj Computational Materials, 2019, 5, .	8.7	37
133	Fast Scanning Probe Microscopy via Machine Learning: Nonâ€Rectangular Scans with Compressed Sensing and Gaussian Process Optimization. Small, 2020, 16, e2002878.	10.0	37
134	Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics. MRS Communications, 2012, 2, 61-73.	1.8	36
135	Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy. Nanotechnology, 2016, 27, 105706.	2.6	36
136	Time resolved surface photovoltage measurements using a big data capture approach to KPFM. Nanotechnology, 2018, 29, 445703.	2.6	36
137	Disorder Identification in Hysteresis Data: Recognition Analysis of the Random-Bond–Random-Field Ising Model. Physical Review Letters, 2009, 103, 157203.	7.8	35
138	Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Applied Physics Letters, 2009, 95, 142902.	3.3	35
139	Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. Journal of Applied Physics, 2010, 108, .	2.5	35
140	Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nature Communications, 2014, 5, 4971.	12.8	35
141	Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces. Scientific Reports, 2015, 5, 17229.	3.3	35
142	Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity. Applied Physics Letters, 2015, 106, .	3.3	35
143	Doping transition-metal atoms in graphene for atomic-scale tailoring of electronic, magnetic, and quantum topological properties. Carbon, 2021, 173, 205-214.	10.3	35
144	Correlative Multimodal Probing of Ionically-Mediated Electromechanical Phenomena in Simple Oxides. Scientific Reports, 2013, 3, 2924.	3.3	34

#	Article	IF	CITATIONS
145	Effect of Doping on Surface Reactivity and Conduction Mechanism in Samarium-Doped Ceria Thin Films. ACS Nano, 2014, 8, 12494-12501.	14.6	34
146	Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy. Fuel, 2014, 126, 32-37.	6.4	34
147	Compressed Sensing of Scanning Transmission Electron Microscopy (STEM) With Nonrectangular Scans. Microscopy and Microanalysis, 2018, 24, 623-633.	0.4	34
148	Electron-beam introduction of heteroatomic Pt–Si structures in graphene. Carbon, 2020, 161, 750-757.	10.3	34
149	Morphology Mapping of Phase-Separated Polymer Films Using Nanothermal Analysis. Macromolecules, 2010, 43, 6724-6730.	4.8	33
150	Poly(ε-caprolactone)-Banded Spherulites and Interaction with MC3T3-E1 Cells. Langmuir, 2012, 28, 4382-4395.	3.5	33
151	Nanoscale mapping of heterogeneity of the polarization reversal in lead-free relaxor–ferroelectric ceramic composites. Nanoscale, 2016, 8, 2168-2176.	5.6	33
152	Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Applied Physics Letters, 2006, 88, 153902.	3.3	32
153	Quantitative determination of tip parameters in piezoresponse force microscopy. Applied Physics Letters, 2007, 90, 212905.	3.3	32
154	Local polarization switching in the presence of surface-charged defects: Microscopic mechanisms and piezoresponse force spectroscopy observations. Physical Review B, 2008, 78, .	3.2	32
155	Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology, 2009, 20, 405708.	2.6	32
156	Open-loop band excitation Kelvin probe force microscopy. Nanotechnology, 2012, 23, 125704.	2.6	32
157	Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	32
158	Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform. ACS Nano, 2015, 9, 4260-4269.	14.6	31
159	Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films. Physical Review B, 2015, 91, .	3.2	31
160	Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging. Advanced Structural and Chemical Imaging, 2018, 4, 3.	4.0	31
161	Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. Npj Computational Materials, 2018, 4, .	8.7	31
162	Piezoresponse amplitude and phase quantified for electromechanical characterization. Journal of Applied Physics, 2020, 128, .	2.5	31

#	Article	IF	CITATIONS
163	Spatially Resolved Spectroscopic Mapping of Polarization Reversal in Polycrystalline Ferroelectric Films: Crossing the Resolution Barrier. Physical Review Letters, 2009, 103, 057601.	7.8	30
164	Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy. Acta Materialia, 2010, 58, 67-75.	7.9	30
165	Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Materialia, 2010, 58, 5316-5325.	7.9	30
166	The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology, 2012, 23, 325402.	2.6	30
167	Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains. Journal of Applied Physics, 2012, 112, .	2.5	29
168	Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes. Scientific Reports, 2013, 3, 1621.	3.3	29
169	Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite. Physical Review B, 2013, 88, .	3.2	29
170	Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection. Nanotechnology, 2015, 26, 175707.	2.6	29
171	Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale, 2016, 8, 15581-15588.	5.6	29
172	Intermittent contact mode piezoresponse force microscopy in a liquid environment. Nanotechnology, 2009, 20, 195701.	2.6	28
173	Chemically induced Jahn–Teller ordering on manganite surfaces. Nature Communications, 2014, 5, 4528.	12.8	28
174	Full information acquisition in piezoresponse force microscopy. Applied Physics Letters, 2015, 107, 263102.	3.3	28
175	Acoustic Detection of Phase Transitions at the Nanoscale. Advanced Functional Materials, 2016, 26, 478-486.	14.9	28
176	Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. Applied Physics Letters, 2009, 95, .	3.3	27
177	Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach. Nanoscale, 2016, 8, 13838-13858.	5.6	27
178	Dynamic behavior of CH3NH3PbI3 perovskite twin domains. Applied Physics Letters, 2018, 113, .	3.3	27
179	High frequency piezoresponse force microscopy in the 1-10MHz regime. Applied Physics Letters, 2007, 91,	3.3	26
180	Multifrequency Imaging in the Intermittent Contact Mode of Atomic Force Microscopy: Beyond Phase Imaging. Small, 2012, 8, 1264-1269.	10.0	26

#	Article	IF	CITATIONS
181	Fundamental limitation to the magnitude of piezoelectric response of ⟠001⟠©pc textured K0.5Na0.5NbO3 ceramic. Applied Physics Letters, 2014, 104, .	3.3	26
182	Fabrication, dynamics, and electrical properties of insulated scanning probe microscopy probes for electrical and electromechanical imaging in liquids. Applied Physics Letters, 2007, 91, .	3.3	25
183	Local probing of relaxation time distributions in ferroelectric polymer nanomesas: Time-resolved piezoresponse force spectroscopy and spectroscopic imaging. Applied Physics Letters, 2008, 92, 232903.	3.3	25
184	Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. Applied Physics Letters, 2010, 96, .	3.3	25
185	Three-dimensional vector electrochemical strain microscopy. Journal of Applied Physics, 2012, 112, .	2.5	25
186	Spatially Resolved Mapping of Oxygen Reduction/Evolution Reaction on Solid-Oxide Fuel Cell Cathodes with Sub-10 nm Resolution. ACS Nano, 2013, 7, 3808-3814.	14.6	25
187	Defective Interfaces in Yttrium-Doped Barium Zirconate Films and Consequences on Proton Conduction. Nano Letters, 2015, 15, 2343-2349.	9.1	25
188	Atomic Mechanisms for the Si Atom Dynamics in Graphene: Chemical Transformations at the Edge and in the Bulk. Advanced Functional Materials, 2019, 29, 1904480.	14.9	25
189	Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy. Applied Physics Letters, 2011, 98, .	3.3	24
190	Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic switching spectroscopy piezoresponse force microscopy. Applied Physics Letters, 2011, 98, 202903.	3.3	24
191	Direct Probe of Interplay between Local Structure and Superconductivity in FeTe _{0.55} Se _{0.45} . ACS Nano, 2013, 7, 2634-2641.	14.6	24
192	G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics. Applied Physics Letters, 2016, 108, .	3.3	24
193	Lab on a beam—Big data and artificial intelligence in scanning transmission electron microscopy. MRS Bulletin, 2019, 44, 565-575.	3.5	24
194	Lightâ€Ferroic Interaction in Hybrid Organic–Inorganic Perovskites. Advanced Optical Materials, 2019, 7, 1901451.	7.3	24
195	Doping of Cr in Graphene Using Electron Beam Manipulation for Functional Defect Engineering. ACS Applied Nano Materials, 2020, 3, 10855-10863.	5.0	24
196	Etching-enhanced Ablation and the Formation of a Microstructure in Silicon by Laser Irradiation in an SF6 Atmosphere. Journal of Materials Research, 2002, 17, 1002-1013.	2.6	23
197	Scanning probe microscopy imaging of frequency dependent electrical transport through carbon nanotube networks in polymers. Nanotechnology, 2004, 15, 907-912.	2.6	23
198	Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT. Advanced Functional Materials, 2011, 21, 941-947.	14.9	23

#	Article	IF	CITATIONS
199	Nanoscale mapping of oxygen vacancy kinetics in nanocrystalline Samarium doped ceria thin films. Applied Physics Letters, 2013, 103, .	3.3	23
200	Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways. Scientific Reports, 2017, 7, 43585.	3.3	23
201	Direct Probing of Polarization Charge at Nanoscale Level. Advanced Materials, 2018, 30, 1703675.	21.0	23
202	Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr _{0.2} Ti _{0.8} O ₃ Thin Films. Advanced Materials, 2018, 30, e1800701.	21.0	23
203	Autonomous Experiments in Scanning Probe Microscopy and Spectroscopy: Choosing Where to Explore Polarization Dynamics in Ferroelectrics. ACS Nano, 2021, 15, 11253-11262.	14.6	23
204	Polarization Dynamics in Ferroelectric Capacitors: Local Perspective on Emergent Collective Behavior and Memory Effects. Advanced Functional Materials, 2013, 23, 2490-2508.	14.9	22
205	Universality of Polarization Switching Dynamics in Ferroelectric Capacitors Revealed by 5D Piezoresponse Force Microscopy. Advanced Functional Materials, 2013, 23, 3971-3979.	14.9	22
206	Ferroelectric domain scaling and switching in ultrathin BiFeO ₃ films deposited on vicinal substrates. New Journal of Physics, 2012, 14, 053040.	2.9	21
207	Rapid mapping of polarization switching through complete information acquisition. Nature Communications, 2016, 7, 13290.	12.8	21
208	Graphene engineering by neon ion beams. Nanotechnology, 2016, 27, 125302.	2.6	21
209	Automated Interpretation and Extraction of Topographic Information from Time of Flight Secondary Ion Mass Spectrometry Data. Scientific Reports, 2017, 7, 17099.	3.3	21
210	E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. Nano Research, 2018, 11, 6217-6226.	10.4	21
211	Reply to: On the ferroelectricity of CH3NH3PbI3 perovskites. Nature Materials, 2019, 18, 1051-1053.	27.5	21
212	Half-harmonic Kelvin probe force microscopy with transfer function correction. Applied Physics Letters, 2012, 100, 063118.	3.3	20
213	Nanoscale Origins of Nonlinear Behavior in Ferroic Thin Films. Advanced Functional Materials, 2013, 23, 81-90.	14.9	20
214	Surface Chemistry Controls Anomalous Ferroelectric Behavior in Lithium Niobate. ACS Applied Materials & Interfaces, 2018, 10, 29153-29160.	8.0	20
215	Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics. Advanced Materials, 2022, 34, e2106426.	21.0	20
216	Single-crystal-like, c-axis oriented BaTiO3 thin films with high-performance on flexible metal templates for ferroelectric applications. Applied Physics Letters, 2009, 94, .	3.3	19

#	Article	IF	CITATIONS
217	Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry. Nanotechnology, 2009, 20, 255701.	2.6	19
218	Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. Physical Review B, 2011, 84, .	3.2	19
219	Toward Quantitative Electrochemical Measurements on the Nanoscale by Scanning Probe Microscopy: Environmental and Current Spreading Effects. ACS Nano, 2013, 7, 8175-8182.	14.6	19
220	Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (La _{<i>x</i>} Sr _{1â€<i>x</i>})CoO _{3â€} _{<i>δ</i>} Cathodes. Advanced Energy Materials, 2013, 3, 788-797.	19.5	19
221	Variable temperature electrochemical strain microscopy of Sm-doped ceria. Nanotechnology, 2013, 24, 145401.	2.6	19
222	Mapping Nanoscale Variations in Photochemical Damage of Polymer/Fullerene Solar Cells with Dissipation Imaging. ACS Nano, 2013, 7, 10405-10413.	14.6	19
223	Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals. Nanotechnology, 2014, 25, 435402.	2.6	19
224	Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors. ACS Applied Materials & amp; Interfaces, 2016, 8, 7349-7355.	8.0	19
225	Strain–Chemical Gradient and Polarization in Metal Halide Perovskites. Advanced Electronic Materials, 2020, 6, 1901235.	5.1	19
226	Imaging mechanism for hyperspectral scanning probe microscopy via Gaussian process modelling. Npj Computational Materials, 2020, 6, .	8.7	19
227	Recent Advances in Electromechanical Imaging on the Nanometer Scale: Polarization Dynamics in Ferroelectrics, Biopolymers, and Liquid Imaging. Japanese Journal of Applied Physics, 2007, 46, 5674-5685.	1.5	18
228	Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3â^CoFe2O4 epitaxial films. Applied Physics Letters, 2008, 93, 074101.	3.3	18
229	High-Frequency Electromechanical Imaging of Ferroelectrics in a Liquid Environment. ACS Nano, 2012, 6, 5559-5565.	14.6	18
230	Local crystallography analysis for atomically resolved scanning tunneling microscopy images. Nanotechnology, 2013, 24, 415707.	2.6	18
231	Local probing of electrochemically induced negative differential resistance in TiO2memristive materials. Nanotechnology, 2013, 24, 085702.	2.6	18
232	Band excitation Kelvin probe force microscopy utilizing photothermal excitation. Applied Physics Letters, 2015, 106, .	3.3	18
233	Atom-by-atom fabrication by electron beam via induced phase transformations. MRS Bulletin, 2017, 42, 653-659.	3.5	18
234	Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution. Scientific Reports, 2013, 3, 2677.	3.3	17

#	Article	IF	CITATIONS
235	Multidimensional dynamic piezoresponse measurements: Unraveling local relaxation behavior in relaxor-ferroelectrics via big data. Journal of Applied Physics, 2015, 118, .	2.5	17
236	Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions. Journal of Applied Physics, 2015, 118, .	2.5	17
237	Local Probing of Ferroelectric and Ferroelastic Switching through Stressâ€Mediated Piezoelectric Spectroscopy. Advanced Materials Interfaces, 2016, 3, 1500470.	3.7	17
238	Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy. Applied Physics Letters, 2016, 108, .	3.3	17
239	A self-driving microscope and the Atomic Forge. MRS Bulletin, 2019, 44, 669-670.	3.5	17
240	Twin domains modulate light-matter interactions in metal halide perovskites. APL Materials, 2020, 8, .	5.1	17
241	Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach. Materials, 2010, 3, 4860-4870.	2.9	16
242	Tuning Susceptibility via Misfit Strain in Relaxed Morphotropic Phase Boundary PbZr _{1â€x} Ti _x O ₃ Epitaxial Thin Films. Advanced Materials Interfaces, 2014, 1, 1400098.	3.7	16
243	Ferroelectricity in Si-Doped Hafnia: Probing Challenges in Absence of Screening Charges. Nanomaterials, 2020, 10, 1576.	4.1	16
244	Towards the limit of ferroelectric nanostructures: switchable sub-10 nm nanoisland arrays. Journal of Materials Chemistry C, 2013, 1, 5299.	5.5	15
245	AFM Investigation of Mechanical Properties of Dentin. Israel Journal of Chemistry, 2008, 48, 65-72.	2.3	14
246	Probing Local Electromechanical Effects in Highly Conductive Electrolytes. ACS Nano, 2012, 6, 10139-10146.	14.6	14
247	Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis. APL Materials, 2014, 2, .	5.1	14
248	Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy. Nanotechnology, 2016, 27, 414003.	2.6	14
249	Dynamic Manipulation in Piezoresponse Force Microscopy: Creating Nonequilibrium Phases with Large Electromechanical Response. ACS Nano, 2020, 14, 10569-10577.	14.6	14
250	Local Strain and Polarization Mapping in Ferrielectric Materials. ACS Applied Materials & Interfaces, 2020, 12, 38546-38553.	8.0	14
251	Variable voltage electron microscopy: Toward atom-by-atom fabrication in 2D materials. Ultramicroscopy, 2020, 211, 112949.	1.9	14
252	Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane. Nanotechnology, 2011, 22, 055709.	2.6	13

#	Article	IF	CITATIONS
253	A-site stoichiometry and piezoelectric response in thin film PbZr1â^'xTixO3. Journal of Applied Physics, 2015, 117, 204104.	2.5	13
254	Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy. Applied Physics Letters, 2005, 87, 172903.	3.3	12
255	In situ electric-field-induced contrast imaging of electronic transport pathways in nanotube-polymer composites. Applied Physics Letters, 2006, 89, 013114.	3.3	12
256	Band Excitation Scanning Probe Microscopies. Microscopy Today, 2010, 18, 34-40.	0.3	12
257	Frequency spectroscopy of irreversible electrochemical nucleation kinetics on the nanoscale. Nanoscale, 2013, 5, 11964.	5.6	12
258	Water-mediated electrochemical nano-writing on thin ceria films. Nanotechnology, 2014, 25, 075701.	2.6	12
259	High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping. Nature Communications, 2018, 9, 2428.	12.8	12
260	To switch or not to switch – a machine learning approach for ferroelectricity. Nanoscale Advances, 2020, 2, 2063-2072.	4.6	12
261	Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level. Applied Physics Letters, 2011, 99, 252905.	3.3	11
262	Electrochemical Strain Microscopy: Probing Electrochemical Transformations in Nanoscale Volumes. Microscopy Today, 2012, 20, 10-15.	0.3	11
263	Electromechanical and elastic probing of bacteria in a cell culture medium. Nanotechnology, 2012, 23, 245705.	2.6	11
264	Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO. Scientific Reports, 2014, 4, 6725.	3.3	11
265	Elasticity Modulation Due to Polarization Reversal and Ionic Motion in the Ferroelectric Superionic Conductor KTiOPO ₄ . ACS Applied Materials & Interfaces, 2018, 10, 32298-32303.	8.0	11
266	Detection of defects in atomic-resolution images of materials using cycle analysis. Advanced Structural and Chemical Imaging, 2020, 6, .	4.0	11
267	Observing the superparaelectric limit of relaxor (Na1â^•2Bi1â^•2)0.9Ba0.1TiO3 nanocrystals. Applied Physics Letters, 2006, 89, 112901.	3.3	10
268	Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass. Applied Physics Letters, 2014, 105, 193106.	3.3	10
269	Signal Origin of Electrochemical Strain Microscopy and Link to Local Chemical Distribution in Solid State Electrolytes. Small Methods, 2021, 5, 2001279.	8.6	10
270	Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning. Nanotechnology, 2021, 32, 035703.	2.6	10

#	Article	IF	CITATIONS
271	Application of spectromicroscopy tools to explore local origins of sensor activity in quasi-1D oxide nanostructures. Nanotechnology, 2006, 17, 4014-4018.	2.6	9
272	Direct measurement of periodic electric forces in liquids. Journal of Applied Physics, 2008, 103, 014306.	2.5	9
273	Composition dependence of local piezoelectric nonlinearity in (0.3)Pb(Ni0.33Nb0.67)O3-(0.7)Pb(ZrxTi1â^'x)O3 films. Journal of Applied Physics, 2011, 110, .	2.5	9
274	Probing Biasâ€Dependent Electrochemical Gas–Solid Reactions in (La _{<i>x</i>} Sr _{1–<i>x</i>})CoO _{3–} _{<i>δ</i>} Cathode Materials. Advanced Functional Materials, 2013, 23, 5027-5036.	14.9	9
275	Mesoscopic harmonic mapping of electromechanical response in a relaxor ferroelectric. Applied Physics Letters, 2015, 106, 222901.	3.3	9
276	Exploring Polarization Rotation Instabilities in Superâ€Tetragonal BiFeO ₃ Epitaxial Thin Films and Their Technological Implications. Advanced Electronic Materials, 2016, 2, 1600307.	5.1	9
277	Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions. Nanoscale, 2017, 9, 5708-5717.	5.6	9
278	Ferroelectric domain engineering of lithium niobate single crystal confined in glass. MRS Communications, 2019, 9, 334-339.	1.8	9
279	Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. Npj Computational Materials, 2019, 5, .	8.7	9
280	Scanning frequency mixing microscopy of high-frequency transport behavior at electroactive interfaces. Applied Physics Letters, 2006, 88, 143128.	3.3	8
281	Controlled mechnical modification of manganite surface with nanoscale resolution. Nanotechnology, 2014, 25, 475302.	2.6	8
282	Dynamic mechanical control of local vacancies in NiO thin films. Nanotechnology, 2018, 29, 275709.	2.6	8
283	Decoupling Mesoscale Functional Response in PLZT across the Ferroelectric–Relaxor Phase Transition with Contact Kelvin Probe Force Microscopy and Machine Learning. ACS Applied Materials & Interfaces, 2018, 10, 42674-42680.	8.0	8
284	Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging data. Materials and Design, 2020, 195, 108973.	7.0	8
285	Bayesian inference in band excitation scanning probe microscopy for optimal dynamic model selection in imaging. Journal of Applied Physics, 2020, 128, 054105.	2.5	8
286	Banded Spherulitic Morphology in Blends of Poly (propylene fumarate) and Poly(<i>ϵ</i> â€caprolactone) and Interaction with MC3T3â€E1 Cells. Macromolecular Chemistry and Physics, 2012, 213, 1239-1250.	2.2	7
287	Quantitative Nanometer cale Mapping of Dielectric Tunability. Advanced Materials Interfaces, 2015, 2, 1500088	3.7	7
288	Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensileâ€Strained Film. Advanced Electronic Materials, 2017, 3, 1600508.	5.1	7

#	Article	IF	CITATIONS
289	Few-cycle Regime Atomic Force Microscopy. Scientific Reports, 2019, 9, 12721.	3.3	7
290	Mapping Conductance and Switching Behavior of Graphene Devices In Situ. Small Methods, 2022, 6, e2101245.	8.6	7
291	Decoding Apparent Ferroelectricity in Perovskite Nanofibers. ACS Applied Materials & Interfaces, 2017, 9, 42131-42138.	8.0	6
292	Nanoscale Mass Spectrometry Multimodal Imaging <i>via</i> Tip-Enhanced Photothermal Desorption. ACS Nano, 2020, 14, 16791-16802.	14.6	6
293	Super-resolution and signal separation in contact Kelvin probe force microscopy of electrochemically active ferroelectric materials. Journal of Applied Physics, 2020, 128, 055101.	2.5	6
294	Probing Metastable Domain Dynamics <i>via</i> Automated Experimentation in Piezoresponse Force Microscopy. ACS Nano, 2021, 15, 15096-15103.	14.6	6
295	Polarization Manipulation via Orientation Control in Polycrystalline BiFeO3Thin Films on Biaxially Textured, Flexible Metallic Tapes. Applied Physics Express, 2011, 4, 021501.	2.4	5
296	Electrocatalysis-induced elasticity modulation in a superionic proton conductor probed by band-excitation atomic force microscopy. Nanoscale, 2015, 7, 20089-20094.	5.6	5
297	Theory-assisted determination of nano-rippling and impurities in atomic resolution images of angle-mismatched bilayer graphene. 2D Materials, 2018, 5, 041008.	4.4	5
298	Imaging Secondary Electron Emission from a Single Atomic Layer. Small Methods, 2021, 5, 2000950.	8.6	5
299	Controlling hydrocarbon transport and electron beam induced deposition on single layer graphene: Toward atomic scale synthesis in the scanning transmission electron microscope. Nano Select, 0, , .	3.7	5
300	Probing polarization dynamics at specific domain configurations: Computer-vision based automated experiment in piezoresponse force microscopy. Applied Physics Letters, 2021, 119, .	3.3	5
301	In Situ Formation of Micron-Scale Li-Metal Anodes with High Cyclability. ECS Electrochemistry Letters, 2013, 3, A4-A7.	1.9	4
302	Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N. Nanotechnology, 2013, 24, 475701.	2.6	3
303	Influence of the interfacing with an electrically inhomogeneous bottom electrode on the ferroelectric properties of epitaxial PbTiO3. Applied Physics Letters, 2013, 103, .	3.3	3
304	ELECTROCHEMICAL STRAIN MICROSCOPY OF LI-ION AND LI-AIR BATTERY MATERIALS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 393-454.	0.1	3
305	Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films. APL Materials, 2015, 3, 036106.	5.1	3
306	Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale. Applied Physics Letters, 2016, 108, .	3.3	3

#	Article	IF	CITATIONS
307	Dynamic Modes in Kelvin Probe Force Microscopy: Band Excitation and G-Mode. Springer Series in Surface Sciences, 2018, , 49-99.	0.3	3
308	Multi-Model Imaging of Local Chemistry and Ferroic Properties of Hybrid Organic-Inorganic Perovskites. Microscopy and Microanalysis, 2019, 25, 2076-2077.	0.4	3
309	Compressive Sensing on Diverse STEM Scans: Real-time Feedback, Low-dose and Dynamic Range. Microscopy and Microanalysis, 2019, 25, 1688-1689.	0.4	3
310	LASER-BASED SYNTHESIS, DIAGNOSTICS, AND CONTROL OF SINGLE-WALLED CARBON NANOTUBES AND NANOHORNS FOR COMPOSITES AND BIOLOGICAL NANOVECTORS. , 2006, , 205-223.		3
311	Patterning: Atomic‣evel Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision (Small 44/2015). Small, 2015, 11, 5854-5854.	10.0	2
312	Spectral Map Reconstruction Using Pan-Sharpening Algorithm: Enhancing Chemical Imaging with AFM-IR. Microscopy and Microanalysis, 2019, 25, 1024-1025.	0.4	2
313	Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy. Npj Computational Materials, 2020, 6, .	8.7	2
314	Using Neural Network Algorithms for Compositional Mapping in STEM EELS. Microscopy and Microanalysis, 2009, 15, 450-451.	0.4	1
315	Ferroelectric Materials: Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT (Adv. Funct. Mater. 5/2011). Advanced Functional Materials, 2011, 21, 802-802.	14.9	1
316	Bias assisted scanning probe microscopy direct write lithography enables local oxygen enrichment of lanthanum cuprates thin films. Nanotechnology, 2015, 26, 325302.	2.6	1
317	Nanosculpting of complex oxides by massive ionic transfer. Nanotechnology, 2016, 27, 505703.	2.6	1
318	Submicron Spatial Resolution in Thermal Desorption Mass Spectrometry via Rapid Heating Functions using Thermal AFM Probes. Microscopy and Microanalysis, 2016, 22, 368-369.	0.4	1
319	G-mode - Full Information Capture Applied to Scanning Probe Microscopy. Microscopy and Microanalysis, 2017, 23, 184-185.	0.4	1
320	Graphene Defect Editing, Deposition, and Growth via E-Beam-Induced Organic Reactions in Aberration Corrected STEM. Microscopy and Microanalysis, 2018, 24, 1994-1995.	0.4	1
321	Dynamic Database Generation for Efficient Calculation of Stellarator Plasma Equilibria. SIAM Journal of Scientific Computing, 2004, 25, 1880-1895.	2.8	0
322	Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities. Microscopy Today, 2008, 16, 28-33.	0.3	0
323	Deep Data Analysis of Atomic Level Structure-Property Relationship in an Iron Superconductor Fe 105 Te 075 Se 025. Microscopy and Microanalysis, 2015, 21, 2345-2346.	0.4	0
324	Local Crystallography for Quantitative Analysis of Atomically Resolved Images. Microscopy and Microanalysis, 2016, 22, 948-949.	0.4	0

#	Article	IF	CITATIONS
325	High Performance Computing Tools for Cross Correlation of Multi-Dimensional Data Sets Across Instrument Platforms. Microscopy and Microanalysis, 2016, 22, 288-289.	0.4	0
326	Inverse Problem Solution for Quantitative Investigations of Nanocrystals Formation and Growth. Microscopy and Microanalysis, 2016, 22, 794-795.	0.4	0
327	Towards Atomic-Scale Fabrication in Silicon. Microscopy and Microanalysis, 2018, 24, 158-159.	0.4	0
328	Atom-by-Atom Assembly in Aberration Corrected STEM and the Role of Chemistry at the Surface of Graphene. Microscopy and Microanalysis, 2018, 24, 326-327.	0.4	0
329	Automated Atom-by-Atom Assembly of Structures in Graphene: The Rise of STEM for Atomic Scale Control. Microscopy and Microanalysis, 2018, 24, 1594-1595.	0.4	0
330	A STEM-based Path Towards Atomic-scale Silicon-based Devices. Microscopy and Microanalysis, 2019, 25, 2290-2291.	0.4	0
331	From Control of the Electron Beam to Control of Single Atoms. Microscopy and Microanalysis, 2019, 25, 1678-1679.	0.4	0
332	Unsupervised Machine Learning to Distill Structural-Property Insights from 4D-STEM. Microscopy and Microanalysis, 2019, 25, 12-13.	0.4	0
333	Accurately Imaging, Tracking and Moving Single Atoms. Microscopy and Microanalysis, 2020, 26, 2556-2557.	0.4	0
334	van der Waals Epitaxy Growth of Bi2Se3 on a Freestanding Monolayer Graphene Membrane: Implications for Layered Materials and Heterostructures. ACS Applied Nano Materials, 2021, 4, 7607-7613.	5.0	0
335	Atomic-scale Feedback-controlled Electron Beam Fabrication of 2D Materials. Microscopy and Microanalysis, 2021, 27, 3072-3073.	0.4	0
336	Bayesian Microscopy: Model Selection for Extracting Weak Nonlinearities from Scanning Probe Microscopy Data. Microscopy and Microanalysis, 2020, 26, 2126-2127.	0.4	0
337	Strain-Induced asymmetry and on-site dynamics of silicon defects in graphene. Carbon Trends, 2022, 9, 100189.	3.0	0