Helmut Krämer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953699/publications.pdf

Version: 2024-02-01

61 papers

11,359 citations

147801 31 h-index 138484 58 g-index

70 all docs

70 docs citations

70 times ranked

22549 citing authors

#	Article	IF	CITATIONS
1	STING controls energy stress-induced autophagy and energy metabolism via STX17. Journal of Cell Biology, 2022, 221, .	5.2	21
2	Hypersensitivity of <scp><i>Vps33B</i></scp> mutant flies to nonâ€pathogenic infections is dictated by aberrant activation of p38b <scp>MAP</scp> kinase. Traffic, 2020, 21, 578-589.	2.7	0
3	Yorkie Growth-Promoting Activity Is Limited by Atg1-Mediated Phosphorylation. Developmental Cell, 2020, 52, 605-616.e7.	7.0	19
4	Autophagy Keeps the Balance in Tissue Homeostasis. Developmental Cell, 2019, 49, 499-500.	7.0	8
5	Drosophila p53 directs nonapoptotic programs in postmitotic tissue. Molecular Biology of the Cell, 2019, 30, 1339-1351.	2.1	14
6	The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system. Scientific Reports, 2019, 9, 2475.	3.3	9
7	Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule. Journal of the American Society of Nephrology: JASN, 2018, 29, 1449-1461.	6.1	37
8	Adaptation to constant light requires Fic-mediated AMPylation of BiP to protect against reversible photoreceptor degeneration. ELife, 2018, 7, .	6.0	29
9	Cdk5-mediated Acn/Acinus phosphorylation regulates basal autophagy independently of metabolic stress. Autophagy, 2018, 14, 1271-1272.	9.1	10
10	Fic-mediated deAMPylation is not dependent on homodimerization and rescues toxic AMPylation in flies. Journal of Biological Chemistry, 2017, 292, 21193-21204.	3.4	42
11	Stress-induced Cdk5 activity enhances cytoprotective basal autophagy in Drosophila melanogaster by phosphorylating acinus at serine437. ELife, 2017, 6, .	6.0	28
12	Escherichia coli Infection of Drosophila. Bio-protocol, 2017, 7, .	0.4	5
13	Isolation and Infection of Drosophila Primary Hemocytes. Bio-protocol, 2017, 7, .	0.4	2
14	ARC Syndrome-Linked Vps33B Protein Is Required for Inflammatory Endosomal Maturation and Signal Termination. Immunity, 2016, 45, 267-279.	14.3	36
15	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
16	Activated Acinus boosts basal autophagy. Molecular and Cellular Oncology, 2015, 2, e995043.	0.7	0
17	The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling. ELife, 2015, 4, e10972.	6.0	37
18	Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2900-2912.	4.1	16

#	Article	IF	CITATIONS
19	Unfolded Protein Response-regulated Drosophila Fic (dFic) Protein Reversibly AMPylates BiP Chaperone during Endoplasmic Reticulum Homeostasis. Journal of Biological Chemistry, 2014, 289, 36059-36069.	3.4	108
20	Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in <i>Drosophila</i> . Molecular Biology of the Cell, 2014, 25, 1338-1354.	2.1	247
21	Acinus integrates AKT1 and subapoptotic caspase activities to regulate basal autophagy. Journal of Cell Biology, 2014, 207, 253-268.	5.2	21
22	Route to destruction: Autophagosomes SNARE lysosomes. Journal of Cell Biology, 2013, 201, 495-497.	5.2	9
23	Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1. Journal of Cell Biology, 2013, 201, 233-247.	5.2	112
24	Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in <i>Drosophila</i> . Development (Cambridge), 2012, 139, 3040-3050.	2.5	77
25	The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet α-granule biogenesis. Blood, 2012, 120, 5032-5040.	1.4	76
26	<scp><i>Drosophila mauve</i></scp> Mutants Reveal a Role of <scp>LYST</scp> Homologs Late in the Maturation of Phagosomes andÂAutophagosomes. Traffic, 2012, 13, 1680-1692.	2.7	40
27	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
28	Visual neurotransmission in Drosophila requires expression of Fic in glial capitate projections. Nature Neuroscience, 2012, 15, 871-875.	14.8	74
28		2.0	74 5
	Nature Neuroscience, 2012, 15, 871-875. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in		
29	Nature Neuroscience, 2012, 15, 871-875. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Journal of Cell Science, 2012, 125, e1-e1. The <i>full-of-bacteria</i> The sixfull-of-bacteria The sixfull-of-bacteria	2.0	5
30	Nature Neuroscience, 2012, 15, 871-875. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Journal of Cell Science, 2012, 125, e1-e1. The <i>full-of-bacteria</i> gene is required for phagosome maturation during immune defense in <i>Drosophila</i> Journal of Cell Biology, 2011, 192, 383-390. AP-1 and clathrin are essential for secretory granule biogenesis in <i>Drosophila</i> Molecular	2.0 5.2	5 66
29 30 31	Nature Neuroscience, 2012, 15, 871-875. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Journal of Cell Science, 2012, 125, e1-e1. The <i>full-of-bacteria</i> gene is required for phagosome maturation during immune defense in <i>Drosophila</i> Journal of Cell Biology, 2011, 192, 383-390. AP-1 and clathrin are essential for secretory granule biogenesis in <i>Drosophila</i> Molecular Biology of the Cell, 2011, 22, 2094-2105. Hook2 is involved in the morphogenesis of the primary cilium. Molecular Biology of the Cell, 2011, 22,	2.0 5.2 2.1	5 66 83
29 30 31 32	Nature Neuroscience, 2012, 15, 871-875. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Journal of Cell Science, 2012, 125, e1-e1. The <i>full-of-bacteria</i> gene is required for phagosome maturation during immune defense in <i>Drosophila</i> Journal of Cell Biology, 2011, 192, 383-390. AP-1 and clathrin are essential for secretory granule biogenesis in <i>Drosophila</i> Molecular Biology of the Cell, 2011, 22, 2094-2105. Hook2 is involved in the morphogenesis of the primary cilium. Molecular Biology of the Cell, 2011, 22, 4549-4562. Drosophila acinus encodes a novel regulator of endocytic and autophagic trafficking. Development	2.0 5.2 2.1 2.1	5 66 83 54
30 31 32 33	Nature Neuroscience, 2012, 15, 871-875. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Journal of Cell Science, 2012, 125, e1-e1. The <i>full-of-bacteria</i> gene is required for phagosome maturation during immune defense in <i>Drosophila</i> Journal of Cell Biology, 2011, 192, 383-390. AP-1 and clathrin are essential for secretory granule biogenesis in <i>Drosophila</i> Biology of the Cell, 2011, 22, 2094-2105. Hook2 is involved in the morphogenesis of the primary cilium. Molecular Biology of the Cell, 2011, 22, 4549-4562. Drosophila acinus encodes a novel regulator of endocytic and autophagic trafficking. Development (Cambridge), 2010, 137, 2157-2166.	2.0 5.2 2.1 2.1	5 66 83 54 29

#	Article	IF	CITATIONS
37	Dynamin-independent synaptic vesicle retrieval?. Nature Neuroscience, 2008, 11, 6-8.	14.8	4
38	The Microtubule-binding Protein Hook3 Interacts with a Cytoplasmic Domain of Scavenger Receptor A. Journal of Biological Chemistry, 2007, 282, 7973-7981.	3.4	18
39	Hook2 contributes to aggresome formation. BMC Cell Biology, 2007, 8, 19.	3.0	41
40	Hook2 Localizes to the Centrosome, Binds Directly to Centriolin/CEP110 and Contributes to Centrosomal Function. Traffic, 2007, 8, 32-46.	2.7	55
41	Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. Journal of Cell Science, 2005, 118, 3663-3673.	2.0	227
42	A Mutation in dVps28 Reveals a Link between a Subunit of the Endosomal Sorting Complex Required for Transport-I Complex and the Actin Cytoskeleton in Drosophila. Molecular Biology of the Cell, 2005, 16, 2301-2312.	2.1	43
43	The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking. Molecular Microbiology, 2003, 49, 1565-1576.	2.5	59
44	Sorting Out Signals in Fly Endosomes. Traffic, 2002, 3, 87-91.	2.7	24
45	Molecular cloning and characterization of human VPS18, VPS 11, VPS16, and VPS33. Gene, 2001, 264, 241-247.	2.2	83
46	Neuralized. Developmental Cell, 2001, 1, 725-726.	7.0	25
47	The Golgi-Associated Hook3 Protein Is a Member of a Novel Family of Microtubule-Binding Proteins. Journal of Cell Biology, 2001, 152, 923-934.	5.2	172
48	Molecular Characterization of Mammalian Homologues of Class C Vps Proteins That Interact with Syntaxin-7. Journal of Biological Chemistry, 2001, 276, 29393-29402.	3.4	73
49	Drosophila endosomal proteins hook and deep orange regulate synapse size but not synaptic vesicle recycling. Journal of Neurobiology, 2000, 45, 105-119.	3.6	28
50	Genetic Dissection of Endocytic Trafficking in <i>Drosophila</i> Using a Horseradish Peroxidase-Bride of Sevenless Chimera: <i>hook</i> ls Required for Normal Maturation of Multivesicular Endosomes. Molecular Biology of the Cell, 1999, 10, 847-859.	2.1	76
51	A Role for the deep orange and carnation Eye Color Genes in Lysosomal Delivery in Drosophila. Molecular Cell, 1999, 4, 479-486.	9.7	198
52	Genetic Analysis of hook, a Gene Required for Endocytic Trafficking in Drosophila. Genetics, 1999, 151, 675-684.	2.9	90
53	Not just pretty eyes: Drosophila eye-colour mutations and lysosomal delivery. Trends in Cell Biology, 1998, 8, 257-259.	7.9	162
54	Determination of photoreceptor cell fate in the Drosophila retina. Current Opinion in Neurobiology, 1994, 4, 14-20.	4.2	21

#	Article	IF	CITATIONS
55	Patrilocalâ^—â^—patrilocal: taking the bride to the husband's home village cell-cell interactions: sevenless captures its bride. Trends in Cell Biology, 1993, 3, 103-105.	7.9	15
56	The bride of sevenless and sevenless interaction: Internalization of a transmembrane ligand. Cell, 1992, 69, 393-399.	28.9	173
57	Induction in the developing compound eye of Drosophila: Multiple mechanisms restrict R7 induction to a single retinal precursor cell. Cell, 1991, 67, 1145-1155.	28.9	159
58	Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature, 1991, 352, 207-212.	27.8	314
59	Generation of Oligomeric Insulin Receptor Forms by Intramolecular Sulfhydryl-Disulfide Exchange. Involvement of Masked Sulfhydryl Groups. Biological Chemistry Hoppe-Seyler, 1987, 368, 471-480.	1.4	12
60	The nonclassical insulin binding of insulin receptors from rat liver is due to the presence of two interacting $\hat{l}\pm$ -subunits in the receptor complex. Biochemical and Biophysical Research Communications, 1986, 135, 459-464.	2.1	45
61	Characterization of solubilized insulin receptors from rat liver microsomes. Existence of two receptor species with different binding properties. FEBS Journal, 1986, 154, 281-287.	0.2	25