List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycobacterium tuberculosis: Immune evasion, latency and reactivation. Immunobiology, 2012, 217, 363-374.	1.9	151
2	Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochemical Journal, 2002, 367, 279-285.	3.7	132
3	Cell wall peptidoglycan in <i>Mycobacterium tuberculosis</i> : An Achilles' heel for the TB-causing pathogen. FEMS Microbiology Reviews, 2019, 43, 548-575.	8.6	131
4	Bioactive Pyridine- <i>N</i> -oxide Disulfides from <i>Allium stipitatum</i> . Journal of Natural Products, 2009, 72, 360-365.	3.0	103
5	Arylamine N-Acetyltransferase Is Required for Synthesis of Mycolic Acids and Complex Lipids in Mycobacterium bovis BCG and Represents a Novel Drug Target. Journal of Experimental Medicine, 2004, 199, 1191-1199.	8.5	93
6	Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2002, 277, 24983-24987.	3.4	81
7	Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2010, 65, 2101-2107.	3.0	77
8	Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Frontiers in Immunology, 2017, 8, 1499.	4.8	77
9	Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open, 2013, 3, e002672.	1.9	74
10	Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine N-acetyltransferase. Biochemical Journal, 2005, 385, 605-612.	3.7	72
11	Characterisation of ATP-Dependent Mur Ligases Involved in the Biogenesis of Cell Wall Peptidoglycan in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e60143.	2.5	71
12	An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2012, 67, 1380-1391.	3.0	68
13	Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents. European Journal of Medicinal Chemistry, 2018, 160, 49-60.	5.5	65
14	Repurposing—a ray of hope in tackling extensively drug resistance in tuberculosis. International Journal of Infectious Diseases, 2015, 32, 50-55.	3.3	64
15	Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs. British Medical Bulletin, 2016, 118, 138-148.	6.9	63
16	A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. International Journal of Antimicrobial Agents, 2013, 42, 513-518.	2.5	62
17	Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. Journal of Ethnopharmacology, 2014, 155, 796-800.	4.1	54
18	An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 2012, 39, 124-129.	2.5	52

#	Article	IF	CITATIONS
19	Design and Synthesis of 1-((1,5-Bis(4-chlorophenyl)-2-methyl-1 <i>H</i> -pyrrol-3-yl)methyl)-4-methylpiperazine (BM212) and <i>N</i> -Adamantan-2-yl- <i>N</i> §€2-((<i>E</i>)-3,7-dimethylocta-2,6-dienyl)ethane-1,2-diamine (SQ109) Pyrrole Hybrid Derivatives: Discovery of Potent Antitubercular Agents Effective against	6.4	51
20	Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology, 2020, 225, 151951.	1.9	51
21	ATP-dependent MurE ligase in Mycobacterium tuberculosis: Biochemical and structural characterisation. Tuberculosis, 2010, 90, 16-24.	1.9	49
22	Inhibition of mycobacterial arylamine N-acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorganic and Medicinal Chemistry, 2007, 15, 3579-3586.	3.0	48
23	Arylamine N-acetyltransferases: a pharmacogenomic approach to drug metabolism and endogenous function. Biochemical Society Transactions, 2003, 31, 615-619.	3.4	46
24	Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein and Cell, 2010, 1, 82-95.	11.0	45
25	Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Molecular Microbiology, 2006, 59, 181-192.	2.5	43
26	2-Hydroxy-substituted cinnamic acids and acetanilides are selective growth inhibitors of Mycobacterium tuberculosis. MedChemComm, 2014, 5, 47-50.	3.4	43
27	HTâ€SPOTi: A Rapid Drug Susceptibility Test (DST) to Evaluate Antibiotic Resistance Profiles and Novel Chemicals for Antiâ€Infective Drug Discovery. Current Protocols in Microbiology, 2016, 40, 17.8.1-17.8.12.	6.5	39
28	Arylamine N-Acetyltransferases in Mycobacteria. Current Drug Metabolism, 2008, 9, 510-519.	1.2	38
29	Flavonoids as Novel Efflux Pump Inhibitors and Antimicrobials Against Both Environmental and Pathogenic Intracellular Mycobacterial Species. Molecules, 2020, 25, 734.	3.8	38
30	Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium tuberculosis: antibacterial activity, molecular docking and inhibition kinetics. Journal of Antimicrobial Chemotherapy, 2011, 66, 1766-1772.	3.0	37
31	Fast-growing, non-infectious and intracellularly surviving drug-resistant Mycobacterium aurum: a model for high-throughput antituberculosis drug screening. Journal of Antimicrobial Chemotherapy, 2009, 64, 774-781.	3.0	35
32	Rapid Methods for Testing Inhibitors of Mycobacterial Growth. Methods in Molecular Biology, 2010, 642, 193-201.	0.9	35
33	Antimycobacterials from natural sources: ancient times, antibiotic era and novel scaffolds. Frontiers in Bioscience - Landmark, 2012, 17, 1861.	3.0	35
34	Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Protein and Cell, 2010, 1, 1011-1022.	11.0	32
35	The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis. Journal of Medicinal Chemistry, 2021, 64, 71-100.	6.4	32
36	Piperidinols That Show Anti-Tubercular Activity as Inhibitors of Arylamine N-Acetyltransferase: An Essential Enzyme for Mycobacterial Survival Inside Macrophages. PLoS ONE, 2012, 7, e52790.	2.5	27

#	Article	IF	CITATIONS
37	ProTides of N-(3-(5-(2′-deoxyuridine))prop-2-ynyl)octanamide as potential anti-tubercular and anti-viral agents. Bioorganic and Medicinal Chemistry, 2014, 22, 2816-2824.	3.0	27
38	Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. Journal of Applied Microbiology, 2015, 118, 864-872.	3.1	26
39	Antimycobacterials from Lovage Root (<i>Ligusticum officinale</i> Koch). Phytotherapy Research, 2013, 27, 993-998.	5.8	25
40	Synthesis and SAR evaluation of novel thioridazine derivatives active against drug-resistant tuberculosis. European Journal of Medicinal Chemistry, 2017, 127, 147-158.	5.5	25
41	Novel Anti-Tuberculosis Nanodelivery Formulation of Ethambutol with Graphene Oxide. Molecules, 2017, 22, 1560.	3.8	25
42	Synthesis of putative chain terminators of mycobacterial arabinan biosynthesis. Organic and Biomolecular Chemistry, 2007, 5, 2257.	2.8	24
43	Tetrahydroisoquinolines affect the whole-cell phenotype of <i>Mycobacterium tuberculosis</i> by inhibiting the ATP-dependent MurE ligase. Journal of Antimicrobial Chemotherapy, 2015, 70, 1691-1703.	3.0	24
44	Overexpression, purification and biochemical characterization of a class A high-molecular-mass penicillin-binding protein (PBP), PBP1â^— and its soluble derivative from Mycobacterium tuberculosis. Biochemical Journal, 2002, 361, 635-639.	3.7	23
45	Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale. Molecules, 2012, 17, 4142-4157.	3.8	23
46	Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition. Scientific Reports, 2018, 8, 1150.	3.3	23
47	Overexpression, purification and biochemical characterization of a class A high-molecular-mass penicillin-binding protein (PBP), PBP1* and its soluble derivative from Mycobacterium tuberculosis. Biochemical Journal, 2002, 361, 635.	3.7	20
48	Nano-Formulation of Ethambutol with Multifunctional Graphene Oxide and Magnetic Nanoparticles Retains Its Anti-Tubercular Activity with Prospects of Improving Chemotherapeutic Efficacy. Molecules, 2017, 22, 1697.	3.8	20
49	Human Antimicrobial RNases Inhibit Intracellular Bacterial Growth and Induce Autophagy in Mycobacteria-Infected Macrophages. Frontiers in Immunology, 2019, 10, 1500.	4.8	20
50	The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae. International Journal of Mycobacteriology, 2015, 4, 207-216.	0.6	19
51	Investigation of the mycobacterial enzyme HsaD as a potential novel target for antiâ€ŧubercular agents using a fragmentâ€based drug design approach. British Journal of Pharmacology, 2017, 174, 2209-2224.	5.4	19
52	Versatile Routes to Marine Sponge Metabolites through Benzylidene Rhodanines. Organic Letters, 2012, 14, 6310-6313.	4.6	18
53	Synthesis and Biological Evaluation of Purpurealidin E-Derived Marine Sponge Metabolites: Aplysamine-2, Aplyzanzine A, and Suberedamines A and B. Journal of Natural Products, 2012, 75, 1090-1101.	3.0	18
54	Synthesis and Antibacterial Evaluation of a New Series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones. Molecules, 2012, 17, 8217-8240.	3.8	17

#	Article	IF	CITATIONS
55	Exploration of Piperidinols as Potential Antitubercular Agents. Molecules, 2014, 19, 16274-16290.	3.8	16
56	Carprofen elicits pleiotropic mechanisms of bactericidal action with the potential to reverse antimicrobial drug resistance in tuberculosis. Journal of Antimicrobial Chemotherapy, 2020, 75, 3194-3201.	3.0	16
57	Characterization of derivatives of the high-molecular-mass penicillin-binding protein (PBP) 1 of Mycobacterium leprae. Biochemical Journal, 2000, 350, 75-80.	3.7	15
58	New InhA Inhibitors Based on Expanded Triclosan and Di-Triclosan Analogues to Develop a New Treatment for Tuberculosis. Pharmaceuticals, 2021, 14, 361.	3.8	14
59	Antimicrobial and Efflux Pump Inhibitory Activity of Carvotacetones from Sphaeranthus africanus Against Mycobacteria. Antibiotics, 2020, 9, 390.	3.7	13
60	Characterisation of a putative AraC transcriptional regulator from Mycobacterium smegmatis. Tuberculosis, 2014, 94, 664-671.	1.9	12
61	DNA sequence-selective C8-linked pyrrolobenzodiazepine–heterocyclic polyamide conjugates show anti-tubercular-specific activities. Journal of Antibiotics, 2016, 69, 843-849.	2.0	12
62	Repositioning of DHFR Inhibitors. Current Topics in Medicinal Chemistry, 2016, 16, 2125-2143.	2.1	12
63	The Properties of Solutions of Isoniazid in Water and Dimethylsulfoxide. Journal of Solution Chemistry, 2012, 41, 1462-1476.	1.2	11
64	Development of a rapid, reliable and quantitative method — "SPOTi―for testing antifungal efficacy. Journal of Microbiological Methods, 2015, 117, 36-40.	1.6	11
65	Mycobactin Analogues with Excellent Pharmacokinetic Profile Demonstrate Potent Antitubercular Specific Activity and Exceptional Efflux Pump Inhibition. Journal of Medicinal Chemistry, 2022, 65, 234-256.	6.4	11
66	Synthesis, anti-mycobacterial activity and DNA sequence-selectivity of a library of biaryl-motifs containing polyamides. Bioorganic and Medicinal Chemistry, 2015, 23, 3705-3711.	3.0	10
67	Exploration of 5â€(5â€nitrothiophenâ€2â€yl)â€4,5â€dihydroâ€1Hâ€pyrazoles as selective, multitargeted antimycobacterial agents. Chemical Biology and Drug Design, 2020, 95, 192-199.	3.2	10
68	The Prospect of Repurposing Immunomodulatory Drugs for Adjunctive Chemotherapy against Tuberculosis: A Critical Review. Antibiotics, 2021, 10, 91.	3.7	10
69	Integrated Targetâ€Based and Phenotypic Screening Approaches for the Identification of Antiâ€Tubercular Agents That Bind to the Mycobacterial Adenylating Enzyme MbtA. ChemMedChem, 2019, 14, 1735-1741.	3.2	9
70	Improving the Potency of <i>N</i> -Aryl-2,5-dimethylpyrroles against Multidrug-Resistant and Intracellular Mycobacteria. ACS Medicinal Chemistry Letters, 2020, 11, 638-644.	2.8	9
71	Weighted Gene Co-Expression Network Analysis Identifies Key Modules and Hub Genes Associated with Mycobacterial Infection of Human Macrophages. Antibiotics, 2021, 10, 97.	3.7	8
72	Chalcones, stilbenes and ketones have anti-infective properties via inhibition of bacterial drug-efflux and consequential synergism with antimicrobial agents. Access Microbiology, 2020, 2, acmi000105.	0.5	8

#	Article	IF	CITATIONS
73	Structure of the stationary phase survival protein YuiC from B.subtilis. BMC Structural Biology, 2015, 15, 12.	2.3	7
74	3-(5-Nitrofuran-2-yl)prop-2-en-1-one Derivatives, with Potent Antituberculosis Activity, Inhibit A Novel Therapeutic Target, Arylamine N-acetyltransferase, in Mycobacteria. Antibiotics, 2020, 9, 368.	3.7	7
75	Characterization of the MurT/GatD complex in <i>Mycobacterium tuberculosis</i> towards validating a novel anti-tubercular drug target. JAC-Antimicrobial Resistance, 2021, 3, dlab028.	2.1	7
76	An Integration of Interdisciplinary Translational Research in Anti-TB Drug Discovery: Out of the University Research Laboratories to Combat Mycobacterium tuberculosis. Molecular Biology (Los) Tj ETQq0 0 0 r	gB J.(Over	lock 10 Tf 50
77	Synthesis and Biological Evaluation of a Novel C8-Pyrrolobenzodiazepine (PBD) Adenosine Conjugate. A Study on the Role of the PBD Ring in the Biological Activity of PBD-Conjugates. Molecules, 2020, 25, 1243.	3.8	5
78	Pathogenesis and Host Immune Response in Leprosy. Advances in Experimental Medicine and Biology, 2021, 1313, 155-177.	1.6	5
79	Characterization of an oxidoreductase from the arylamine <i>N</i> â€acetyltransferase operon in <i>Mycobacterium smegmatis</i> . FEBS Journal, 2011, 278, 4824-4832.	4.7	4
80	UV-curable gels as topical nail medicines:In vivo residence, anti-fungal efficacy and influence of gel components on their properties. International Journal of Pharmaceutics, 2016, 514, 244-254.	5.2	3
81	Synthesis and mycobacterial evaluation of 5â€substitutedâ€6â€acetylâ€2â€aminoâ€7â€methylâ€5,8â€dihydropyridoâ€{2,3â€d]pyrimidinâ€4(3H)â€one d Pharmazie, 2019, 352, 1900068.	er iva tives.	Anchiv Der
82	Investigating Ghanaian Allium Species for Anti-Infective and Resistance-Reversal Natural Product Leads to Mitigate Multidrug-Resistance in Tuberculosis. Antibiotics, 2021, 10, 902.	3.7	3
83	Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli. Antibiotics, 2022, 11, 67.	3.7	2
84	The Phytochemistry and Pharmacology of Tulbaghia, Allium, Crinum and Cyrtanthus: â€~Talented' Taxa from the Amaryllidaceae. Molecules, 2022, 27, 4475.	3.8	2
85	Bioactive Compounds from the Bornean Endemic Plant Goniothalamus longistipetes. Antibiotics, 2020, 9, 913.	3.7	1
86	Vaccination Strategies Against Mycobacterium tuberculosis: BCG and Beyond. Advances in Experimental Medicine and Biology, 2021, 1313, 217-240.	1.6	1
87	Immunobiology of tubercle bacilli and prospects of immunomodulatory drugs to tackle tuberculosis (TB) and other non-tubercular mycobacterial infections. Immunobiology, 2022, 227, 152224.	1.9	1
88	Lasso Peptides and Murein Peptide Ligase Inhibitors as Novel Anti-Mycobacterial Agents. , 2015, , .		0
89	Arylamine <i>N</i> -Acetyltransferase in Mycobacteria. , 2018, , 303-324.		0
90	Prospects of Pre-clinical [6.6.0] Bicyclic Nitrogen Heterocycles in the Treatment of Tuberculosis. , 2019, , 147-165.		0