Sanjib Bhakta

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2953087/publications.pdf
Version: 2024-02-01

Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter
2 encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochemical Journal, 2002, 367,3 Cell wall peptidoglycan in $\langle i\rangle$ Mycobacterium tuberculosis</i>: An Achillesâ $€^{\text {TM }}$ heel for the TB-causing
6 Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2002, 277, 24983-24987.

8 Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Frontiers in Immunology, 2017, 8, 1499.
$4.8 \quad 77$

9 Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi
$9 \quad$ whole-cell phenotypic assay. BMJ Open, 2013, 3, e002672.

10 Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine N -acetyltransferase. Biochemical Journal, 2005, 385, 605-612.
11 Characterisation of ATP-Dependent Mur Ligases Involved in the Biogenesis of Cell Wall Peptidoglycanin Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e60143.
12 An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. Journal

Repurposingâ€"a ray of hope in tackling extensively drug resistance in tuberculosis. International Journal of Infectious Diseases, 2015, 32, 50-55.
1-((1,5 -Bis(4-chlorophenyl)-2-methyl-1 <i>H<|i>-pyrrol-3-yl)methyl)-4-methylpiperazine (BM212) and
$19 \quad$ <i>N</i>-Adamantan-2-yl-<i>N</i>ấ22-((<i>E</i>)-3,7-dimethylocta-2,6-dienyl)ethane-1,2-diamine (SQ109)
Flavonoids as Novel Efflux Pump Inhibitors and Antimicrobials Against Both Environmental and
Pathogenic Intracellular Mycobacterial Species. Molecules, 2020, 25, 734.

Interaction of N-methyl-2-alkenyl-4-quinolones with ATP-dependent MurE ligase of Mycobacterium
30 tuberculosis: antibacterial activity, molecular docking and inhibition kinetics. Journal of
3.0

Antimicrobial Chemotherapy, 2011, 66, 1766-1772.
Fast-growing, non-infectious and intracellularly surviving drug-resistant Mycobacterium aurum: a
Fast-growing, no
model for high-throughput antituberculosis drug screening. Journal of Antimicrobial Chemotherapy,
3.0

35
2009, 64, 774-781.

Rapid Methods for Testing Inhibitors of Mycobacterial Growth. Methods in Molecular Biology, 2010,
0.9

35
32 642, 193-201.

Antimycobacterials from natural sources: ancient times, antibiotic era and novel scaffolds. Frontiers
in Bioscience - Landmark, 2012, 17, 1861.
3.0

35

34 Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium
$11.0 \quad 32$
tuberculosis. Protein and Cell, 2010, 1, 1011-1022.

35 The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against
Tuberculosis. Journal of Medicinal Chemistry, 2021, 64, 71-100.
6.4

32

Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine.
Journal of Applied Microbiology, 2015, 118, 864-872.
Novel Anti-Tuberculosis Nanodelivery Formulation of Ethambutol with Graphene Oxide. Molecules,
$217,22,1560$.

Synthesis of putative chain terminators of mycobacterial arabinan biosynthesis. Organic and
Biomolecular Chemistry, 2007, 5, 2257.
43
44

Tetrahydroisoquinolines affect the whole-cell phenotype of <i>Mycobacterium tuberculosis</i> by
inhibiting the ATP-dependent MurE ligase. Journal of Antimicrobial Chemotherapy, 2015, 70, 1691-1703.
3.0

24

Overexpression, purification and biochemical characterization of a class A high-molecular-mass
penicillin-binding protein (PBP), PBP1â^- and its soluble derivative from Mycobacterium tuberculosis.
3.7

23
Biochemical Journal, 2002, 361, 635-639.

45 Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale. Molecules, 2012, 17, 4142-4157.
3.8

23

46 Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities
through Drug Efflux Pump and Biofilm Inhibition. Scientific Reports, 2018, 8, 1150.
3.3

23

47	Overexpression, purification and biochemical characterization of a class A high-molecular-mass penicillin-binding protein (PBP), PBP1* and its soluble derivative from Mycobacterium tuberculosis. Biochemical Journal, 2002, 361, 635.	3.7	20
48	Nano-Formulation of Ethambutol with Multifunctional Graphene Oxide and Magnetic Nanoparticles Retains Its Anti-Tubercular Activity with Prospects of Improving Chemotherapeutic Efficacy. Molecules, 2017, 22, 1697.	3.8	20
49	Human Antimicrobial RNases Inhibit Intracellular Bacterial Growth and Induce Autophagy in Mycobacteria-Infected Macrophages. Frontiers in Immunology, 2019, 10, 1500.	4.8	20

The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs
50 against Mycobacterium tuberculosis and Mycobacterium leprae. International Journal of
0.6

19
Mycobacteriology, 2015, 4, 207-216.
51. Investigation of the mycobacterial enzyme HsaD as a potential novel target for antiâ€tubercular agents
5.4

19
using a fragmentâ€based drug design approach. British Journal of Pharmacology, 2017, 174, 2209-2224.

Versatile Routes to Marine Sponge Metabolites through Benzylidene Rhodanines. Organic Letters,
2012, 14, 6310-6313.
4.6

18

Synthesis and Biological Evaluation of Purpurealidin E-Derived Marine Sponge Metabolites:
Aplysamine-2, Aplyzanzine A, and Suberedamines A and B. Journal of Natural Products, 2012, 75, 1090-1101.
3.0

18

55 Exploration of Piperidinols as Potential Antitubercular Agents. Molecules, 2014, 19, 16274-162 | Carprofen elicits pleiotropic mechanisms of bactericidal action with the potential to reverse |
| :--- |
| 56 antimicrobial drug resistance in tuberculosis. Journal of Antimicrobial Chemotherapy, 2020, |

$3.8 \quad 16$

56	3194-3201.
$57 \quad$Characterization of derivatives of the high-molecular-mass penicillin-binding protein (PBP) 1 of Mycobacterium leprae. Biochemical Journal, 2000, 350, 75-80.	
$58 \quad$New InhA Inhibitors Based on Expanded Triclosan and Di-Triclosan Analogues to Develop a New Treatment for Tuberculosis. Pharmaceuticals, 2021, 14, 361.	

61 DNA sequence-selective C8-linked pyrrolobenzodiazepineâ€"heterocyclic po$2.0 \quad 12$63 The Properties of Solutions of Isoniazid in Water and Dimethylsulfoxide. Journal of SolutionChemistry, 2012, 41, 1462-1476.

The Prospect of Repurposing Immunomodulatory Drugs for Adjunctive Chemotherapy against

Integrated Targetâ€Based and Phenotypic Screening Approaches for the Identification of Antiâ€さubercular
Agents That Bind to the Mycobacterial Adenylating Enzyme MbtA. ChemMedChem, 2019, 14, 1735-1741.
3.2

9

73 Structure of the stationary phase survival protein YuiC from B.subtilis. BMC Structural Biology, 2015,
15,12 .

3-(5-Nitrofuran-2-yl)prop-2-en-1-one Derivatives, with Potent Antituberculosis Activity, Inhibit A Novel Therapeutic Target, Arylamine N-acetyltransferase, in Mycobacteria. Antibiotics, 2020, 9, 368.
3.7

> Characterization of the MurT/GatD complex in $\langle i\rangle$ Mycobacterium tuberculosis</i> towards validating a novel anti-tubercular drug target. JAC-Antimicrobial Resistance, 2021, 3, dlab028.

An Integration of Interdisciplinary Translational Research in Anti-TB Drug Discovery: Out of the
76 University Research Laboratories to Combat Mycobacterium tuberculosis. Molecular Biology (Los) Tj ETQq0 00 rgBठ. OOverlock 10 Tf 50
$3.8 \quad 5$
A Study on the Role of the PBD Ring in the Biological Activity of PBD-Conjugates. Molecules, 2020, 25, 1243.

Pathogenesis and Host Immune Response in Leprosy. Advances in Experimental Medicine and Biology, 2021, 1313, 155-177.

Characterization of an oxidoreductase from the arylamine <i>N</i>â€acetyltransferase operon in
<i>Mycobacteriumâ€fsmegmatis<|i>. FEBS Journal, 2011, 278, 4824-4832.

UV-curable gels as topical nail medicines:In vivo residence, anti-fungal efficacy and influence of gel components on their properties. International Journal of Pharmaceutics, 2016, 514, 244-254.
5.2

3

Synthesis and mycobacterial evaluation of

81 5â€substitutedâ€6â€acetylâ€2â€aminoâ€习â€methylâ€5,8â€dihydropyridoâ€ $\{2,3$ â $€ d]$ pyrimidinâ€4(3H)â€one deriwatives. Alachiv Der

Investigating Ghanaian Allium Species for Anti-Infective and Resistance-Reversal Natural Product Leads to Mitigate Multidrug-Resistance in Tuberculosis. Antibiotics, 2021, 10, 902.
3.7

3

Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli.
83 Antibiotics, 2022, 11, 67.
$3.7 \quad 2$

The Phytochemistry and Pharmacology of Tulbaghia, Allium, Crinum and Cyrtanthus: â€ Talentedâ€ ${ }^{\text {TM }}$ Taxa
84 from the Amaryllidaceae. Molecules, 2022, 27, 4475.
3.8

2

Bioactive Compounds from the Bornean Endemic Plant Goniothalamus longistipetes. Antibiotics, 2020,
9, 913.

Vaccination Strategies Against Mycobacterium tuberculosis: BCG and Beyond. Advances in Experimental Medicine and Biology, 2021, 1313, 217-240.

Immunobiology of tubercle bacilli and prospects of immunomodulatory drugs to tackle tuberculosis
(TB) and other non-tubercular mycobacterial infections. Immunobiology, 2022, 227, 152224.
1.9

1

Prospects of Pre-clinical [6.6.0] Bicyclic Nitrogen Heterocycles in the Treatment of Tuberculosis. ,
2019, , 147-165.

