
Salvatore Guarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2952255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beneficial Effects of Polydeoxyribonucleotide (PDRN) in an In Vitro Model of Fuchs Endothelial Corneal Dystrophy. Pharmaceuticals, 2022, 15, 447.	3.8	5
2	Mechanisms of Hydrogen Sulfide against the Progression of Severe Alzheimer's Disease in Transgenic Mice at Different Ages. Pharmacology, 2019, 103, 50-60.	2.2	50
3	Melanocortin Receptor-4 Gene Polymorphisms in Glioblastoma Patients Treated with Concomitant Radio-Chemotherapy. Molecular Neurobiology, 2018, 55, 1396-1404.	4.0	7
4	Melanocortin Receptor-4 and Glioblastoma Cells: Effects of the Selective Antagonist ML00253764 Alone and in Combination with Temozolomide In Vitro and In Vivo. Molecular Neurobiology, 2018, 55, 4984-4997.	4.0	6
5	Effects of COX1-2/5-LOX blockade in Alzheimer transgenic 3xTg-AD mice. Inflammation Research, 2017, 66, 389-398.	4.0	37
6	Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Progress in Neurobiology, 2017, 148, 40-56.	5.7	28
7	NDP-α-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC4 receptors. Molecular and Cellular Neurosciences, 2015, 67, 13-21.	2.2	34
8	NDP-α-MSH attenuates heart and liver responses to myocardial reperfusion via the vagus nerve and JAK/ERK/STAT signaling. European Journal of Pharmacology, 2015, 769, 22-32.	3.5	14
9	Protective effects of the melanocortin analog NDP-α-MSH in rats undergoing cardiac arrest. European Journal of Pharmacology, 2014, 745, 108-116.	3.5	16
10	Melanocortins protect against brain damage and counteract cognitive decline in a transgenic mouse model of moderate Alzheimer׳s disease. European Journal of Pharmacology, 2014, 740, 144-150.	3.5	26
11	Melanocortins protect against progression of Alzheimer's disease in triple-transgenic mice by targeting multiple pathophysiological pathways. Neurobiology of Aging, 2014, 35, 537-547.	3.1	62
12	Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacological Research, 2013, 72, 1-8.	7.1	29
13	Hydrogen sulfide slows down progression of experimental Alzheimer's disease by targeting multiple pathophysiological mechanisms. Neurobiology of Learning and Memory, 2013, 104, 82-91.	1.9	214
14	Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia. European Journal of Pharmacology, 2013, 707, 78-86.	3.5	45
15	Protective effects of melanocortins on short-term changes in a rat model of traumatic brain injury*. Critical Care Medicine, 2012, 40, 945-951.	0.9	31
16	Centrally acting leptin induces a resuscitating effect in haemorrhagic shock in rats. Regulatory Peptides, 2012, 176, 45-50.	1.9	4
17	Melanocortins as potential therapeutic agents in severe hypoxic conditions. Frontiers in Neuroendocrinology, 2012, 33, 179-193.	5.2	31
18	Molecular Changes Induced in Rat Liver by Hemorrhage and Effects of Melanocortin Treatment. Anesthesiology, 2012, 116, 692-700.	2.5	10

#	Article	IF	CITATIONS
19	Melanocortin 4 Receptor Activation Protects Against Testicular Ischemia-Reperfusion Injury by Triggering the Cholinergic Antiinflammatory Pathway. Endocrinology, 2011, 152, 3852-3861.	2.8	25
20	Antithrombotic Activity of a 2-kDa Heparin Fragment in an Experimental Model of Carotid Artery Thrombosis in Rats. Journal of Pharmacy and Pharmacology, 2011, 48, 407-410.	2.4	0
21	Melanocortin 4 receptor stimulation decreases pancreatitis severity in rats by activation of the cholinergic anti-inflammatory pathway*. Critical Care Medicine, 2011, 39, 1089-1096.	0.9	50
22	Melanocortins protect against multiple organ dysfunction syndrome in mice. British Journal of Pharmacology, 2011, 162, 917-928.	5.4	23
23	Melanocortin MC4 receptor agonists counteract late inflammatory and apoptotic responses and improve neuronal functionality after cerebral ischemia. European Journal of Pharmacology, 2011, 670, 479-486.	3.5	46
24	Treatment of cerebral ischemia with melanocortins acting at MC4 receptors induces marked neurogenesis and long-lasting functional recovery. Acta Neuropathologica, 2011, 122, 443-453.	7.7	51
25	Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia/reperfusion through a vagus nerve-mediated mechanism. European Journal of Pharmacology, 2010, 637, 124-130.	3.5	34
26	Melanocortins and the Cholinergic Anti-Inflammatory Pathway. Advances in Experimental Medicine and Biology, 2010, 681, 71-87.	1.6	27
27	High mobility group box-1 expression correlates with poor outcome in lung injury patients. Pharmacological Research, 2010, 61, 116-120.	7.1	36
28	Effects of aglycone genistein in a rat experimental model of postmenopausal metabolic syndrome. Journal of Endocrinology, 2009, 200, 367-376.	2.6	54
29	Functional recovery after delayed treatment of ischemic stroke with melanocortins is associated with overexpression of the activity-dependent gene Zif268. Brain, Behavior, and Immunity, 2009, 23, 844-850.	4.1	31
30	THE DISACCHARIDE TREHALOSE INHIBITS PROINFLAMMATORY PHENOTYPE ACTIVATION IN MACROPHAGES AND PREVENTS MORTALITY IN EXPERIMENTAL SEPTIC SHOCK. Shock, 2007, 27, 91-96.	2.1	48
31	Selective melanocortin MC4 receptor agonists reverse haemorrhagic shock and prevent multiple organ damage. British Journal of Pharmacology, 2007, 150, 595-603.	5.4	44
32	Neuroprotection in focal cerebral ischemia owing to delayed treatment with melanocortins. European Journal of Pharmacology, 2007, 570, 57-65.	3.5	43
33	ACTIVATION OF THE CHOLINERGIC ANTI-INFLAMMATORY PATHWAY REDUCES NF-κB ACTIVATION, BLUNTS TNF-Î: PRODUCTION, AND PROTECTS AGAINTS SPLANCHIC ARTERY OCCLUSION SHOCK. Shock, 2006, 25, 500-506.	[±] 2.1	91
34	Broad therapeutic treatment window of [Nle4, D-Phe7]α-melanocyte-stimulating hormone for long-lasting protection against ischemic stroke, in Mongolian gerbils. European Journal of Pharmacology, 2006, 538, 48-56.	3.5	38
35	Both Early and Delayed Treatment with Melanocortin 4 Receptor-Stimulating Melanocortins Produces Neuroprotection in Cerebral Ischemia. Endocrinology, 2006, 147, 1126-1135.	2.8	106
36	Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats*. Critical Care Medicine, 2005, 33, 2621-2628.	0.9	160

#	Article	IF	CITATIONS
37	Lipid peroxidation triggers both c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK) activation and neointimal hyperplasia induced by cessation of blood flow in the mouse carotid artery. Atherosclerosis, 2005, 178, 295-302.	0.8	18
38	Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway. Cardiovascular Research, 2004, 63, 357-365.	3.8	113
39	Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors. European Journal of Pharmacology, 2003, 477, 227-234.	3.5	43
40	Lipid Peroxidation Inhibition Reduces NF-κB Activation and Attenuates Cerulein-induced Pancreatitis. Free Radical Research, 2003, 37, 425-435.	3.3	31
41	Efferent Vagal Fibre Stimulation Blunts Nuclear Factor-l [°] B Activation and Protects Against Hypovolemic Hemorrhagic Shock. Circulation, 2003, 107, 1189-1194.	1.6	286
42	New gene therapy for the treatment of burn wounds*. Critical Care Medicine, 2003, 31, 1280-1281.	0.9	6
43	ACTH analogue in treatment of acute aortic dissection. Lancet, The, 2002, 359, 168.	13.7	2
44	Evidence for a role of nuclear factor-l̂ºB in acute hypovolemic hemorrhagic shock. Surgery, 2002, 131, 50-58.	1.9	27
45	Cannabinoid CB1 receptor blockade enhances the protective effect of melanocortins in hemorrhagic shock in the rat. European Journal of Pharmacology, 2002, 441, 91-97.	3.5	8
46	MC 3 receptors are involved in the protective effect of melanocortins in myocardial ischemia/reperfusion-induced arrhythmias. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 177-182.	3.0	41
47	Involvement of the central nervous system in the protective effect of melanocortins in myocardial ischaemia/reperfusion injury. Resuscitation, 2002, 52, 109-115.	3.0	31
48	Survival rate after early treatment for acute type-A aortic dissection with ACTH-(1–24). Lancet, The, 2001, 358, 469-470.	13.7	39
49	Nuclear Factor-κB as a target of cyclosporin in acute hypovolemic hemorrhagic shock. Cardiovascular Research, 2001, 52, 143-152.	3.8	15
50	Oxidative stress causes nuclear factor-κB activation in acute hypovolemic hemorrhagic shock. Free Radical Biology and Medicine, 2001, 30, 1055-1066.	2.9	67
51	Adrenocorticotropin inhibits nitric oxide synthase II mRNA expression in rat macrophages. Life Sciences, 2000, 66, 2247-2254.	4.3	5
52	Adrenocorticotropin reverses vascular dysfunction and protects against splanchnic artery occlusion shock. British Journal of Pharmacology, 1999, 128, 816-822.	5.4	31
53	High blood levels of nitric oxide in rats subjected to prolonged respiratory arrest and their modulation during adrenocorticotropin-induced resuscitation. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 53-59.	3.0	9
54	Tumour necrosis factor-α as a target of melanocortins in haemorrhagic shock, in the anaesthetized rat. British Journal of Pharmacology, 1998, 124, 1587-1590.	5.4	35

#	Article	IF	CITATIONS
55	Adrenocorticotropin counteracts the increase in free radical blood levels, detected by electron spin resonance spectrometry, in rats subjected to prolonged asphyxia. Life Sciences, 1998, 63, 97-104.	4.3	6
56	Adrenocorticotropin normalizes the blood levels of nitric oxide in hemorrhage-shocked rats. European Journal of Pharmacology, 1997, 336, 15-21.	3.5	27
5 7	Inhibition of nitric oxide synthases enhances the effect of ACTH in hemorrhagic shock. Life Sciences, 1997, 61, 1889-1897.	4.3	16
58	Physostigmine has a life-saving effect in rats subjected to prolonged respiratory arrest. Neuroscience Letters, 1997, 232, 123-126.	2.1	7
59	Resuscitating effect of melanocortin peptides after prolonged respiratory arrest. British Journal of Pharmacology, 1997, 121, 1454-1460.	5.4	36
60	Influence of ACTHâ€(1–24) on free radical levels in the blood of haemorrhageâ€shocked rats: direct <i>ex vivo</i> detection by electron spin resonance spectrometry. British Journal of Pharmacology, 1996, 119, 29-34.	5.4	30
61	Serotonin Is Involved in the ACTH-Induced Reversal of Hemorrhagic Shock in Anesthetized Rats. Pharmacology, 1996, 52, 207-215.	2.2	2
62	A highly reproducible model of arterial thrombosis in rats. Journal of Pharmacological and Toxicological Methods, 1996, 35, 101-105.	0.7	41
63	The reversal of experimental hemorrhagic shock induced by nicotine and dimethylphenylpiperazinium is adrenal-dependent. Resuscitation, 1996, 31, 145-150.	3.0	1
64	Adrenocorticotropin Release Is Not Involved in the Nicotine-Induced Reversal of Hemorrhagic Shock in Anesthetized Rats. Pharmacology, 1995, 50, 34-39.	2.2	0
65	Reperfusion-induced arrhythmias and lethality are reduced by a 2KDa heparin fragment. Life Sciences, 1995, 57, 967-972.	4.3	7
66	Dopamine D1 receptors are involved in the ACTH-induced reversal of hemorrhagic shock. European Journal of Pharmacology, 1994, 253, 303-306.	3.5	2
67	Comparison of the effects of ACTH-(1–24), methylprednisolone, aprotinin, and norepinephrine in a model of hemorrhagic shock in rats. Resuscitation, 1993, 25, 219-226.	3.0	7
68	Role of neuronal and vascular Ca ²⁺ â€channels in the ACTHâ€induced reversal of haemorrhagic shock. British Journal of Pharmacology, 1993, 109, 645-650.	5.4	7
69	Investigations on the mechanisms and site(s) of action of the nicotine-induced reversal of hemoragic shock. Pharmacological Research, 1992, 25, 107-108.	7.1	Ο
70	Capsaicin prevents the adrenocorticotropin-induced improvement of cardiovascular function and survival in hemorrhage-shocked rats. Neuroscience Letters, 1992, 143, 181-184.	2.1	8
71	Influence of ACTH-(1–24) on metabolic acidosis and hypoxemia induced by massive hemorrhage in rats. Resuscitation, 1992, 23, 113-120.	3.0	14
72	Reversal of experimental hemorrhagic shock by dimethylphenylpiperazinium (DMPP). Experientia, 1992, 48, 663-667.	1.2	10

#	Article	IF	CITATIONS
73	TRH reverses the ECG and EEG ischemic changes induced by massive hemorrhage in rats. Life Sciences, 1991, 49, 1815-1821.	4.3	6
74	Influence of TRH on regional blood flow and metabolic acidosis in a model of volume-controlled hemorrhagic shock in rats. Neuropeptides, 1991, 20, 233-238.	2.2	5
75	Afferent vagal fibres and central cholinergic mechanisms are involved in the TRH-induced reversal of haemorrhagic shock. Pharmacological Research, 1991, 23, 271-278.	7.1	10
76	Nicotine reverses hemorrhagic shock in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 343, 427-430.	3.0	15
77	Early treatment with ACTH-(l-24) in a rat model of hemorrhagic shock prolongs survival and extends the time-limit for blood reinfusion to be effective. Critical Care Medicine, 1990, 18, 862-865.	0.9	35
78	Brain M3 muscarinic receptors are involved in the ACTH-induced reversal of hemorrhagic shock. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 36-9.	3.0	9
79	Circulatory and respiratory consequences of massive hemorrhage are reversed by protoveratrines. Experientia, 1990, 46, 704-708.	1.2	10
80	Intracerebroventricular Injection of Hemicholinium-3 Prevents the ACTH-Induced, but Not the Physostigmine-Induced, Reversal of Hemorrhagic Shock in Rats. Pharmacology, 1990, 40, 85-89.	2.2	17
81	Influence of morphine on the reversal of haemorrhagic shock induced by cholinergic drugs. Pharmacological Research, 1990, 22, 331-335.	7.1	4
82	Cholecystokinin peptides and bombesin reverse hemorrhagic shock in rats. Resuscitation, 1989, 18, 129-131.	3.0	2
83	Effect of ACTH-(1-24) on the volume of circulating blood and on regional blood flow in rats bled to hypovolemic shock. Resuscitation, 1989, 18, 133-134.	3.0	11
84	Characteristics of brain, heart ventricle and spleen capsule adrenoceptors in rats bled to hypovolemic shock and treated with ACTH-(1-24). Resuscitation, 1989, 18, 135-137.	3.0	4
85	The adrenocorticotropic hormone (ACTH)-induced reversal of hemorrhagic shock. Resuscitation, 1989, 18, 253-267.	3.0	37
86	Adrenocorticotropic hormone (ACTH) and centrally-acting cholinomimetic drugs improve survival of rats with severe hemorrhagic shock through distinct central cholinergic mechanisms. Resuscitation, 1989, 18, 289-297.	3.0	6
87	Central cholinergic mechanisms involved in the shock-reversal activity of ACTH-(1–24) and of cholinomimetic drugs. Pharmacological Research, 1989, 21, 445-445.	7.1	0
88	Bombesin reverses bleeding-induced hypovolemic shock, in rats. Life Sciences, 1989, 45, 107-116.	4.3	9
89	Reversal of haemorrhagic shock in rats by cholinomimetic drugs. British Journal of Pharmacology, 1989, 98, 218-224.	5.4	40
90	Anti-shock effect of acth-(1–24): Influence of subtotal hepatectomy. Pharmacological Research Communications, 1988, 20, 395-403.	0.2	13

#	Article	IF	CITATIONS
91	Influence of the intravenous administration of ACTH-(1-24) on the characteristics of brain, heart and spleen adrenoceptors of haemorrhage-shocked rats. Pharmacological Research Communications, 1988, 20, 739-749.	0.2	4
92	Haematological changes induced by the intravenous injection of CCK-8 in rats subjected to haemorrhagic shock. Neuropeptides, 1988, 11, 69-72.	2.2	12
93	Mechanism of Action of the Anti-Shock Effect of CCK-8: Influence of CCK Antagonists and of Sympatholytic Drugs. Pharmacology, 1988, 37, 286-292.	2.2	7
94	ACTH-(1–24) restores blood pressure in acute hypovolaemia and haemorrhagic shock in humans. European Journal of Clinical Pharmacology, 1987, 32, 537-538.	1.9	38
95	Anti-shock effect of ACTH-(1–24) in rats: Comparison between intracerebroventricular and intravenous route of administration. Pharmacological Research Communications, 1987, 19, 255-260.	0.2	12
96	Different cholinergic pathways are involved in the improvement induced by CCK-8 and by ACTH-(1–24) in massive acute hemorrhage, in rats. Pharmacological Research Communications, 1987, 19, 511-516.	0.2	7
97	α-MSH and other ACTH fragments improve cardiovascular function and survival in experimental hemorrhagic shock. European Journal of Pharmacology, 1986, 130, 19-26.	3.5	88
98	Adrenal-independent, anti-shock effect of ACTH-(1–24) in rats. European Journal of Pharmacology, 1986, 122, 387-388.	3.5	53
99	Adrenocorticotropin reversal of experimental hemorrhagic shock is antagonized by morphine. Life Sciences, 1986, 39, 1271-1280.	4.3	45
100	Influence of vagotomy and of atropine on the anti-shock effect of adrenocorticotropin. Neuropeptides, 1986, 8, 19-24.	2.2	22
101	Caerulein and cholecystokinin reverse experimental hemorrhagic shock. Neuropeptides, 1986, 8, 25-31.	2.2	23
102	Olive oil-provoked bile-dependent absorption of heparin from gastro-intestinal tract in rats. Pharmacological Research Communications, 1985, 17, 685-697.	0.2	13
103	Sodium deoxycholate promotes the absorption of heparin administered orally, probably by acting on gastrointestinal mucosa, in rats. Experientia, 1985, 41, 350-352.	1.2	19
104	Absorption of Heparin Injected into Various Parts of the Rat Intestinal Tract: A Bile-Dependent Mechanism?. Pharmacology, 1985, 31, 150-154.	2.2	0
105	Influence of clonidine on the ACTH-induced behavioral syndrome. European Journal of Pharmacology, 1984, 101, 299-301.	3.5	8