Yifat Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2952174/publications.pdf Version: 2024-02-01

YIEAT MILLED

#	Article	IF	CITATIONS
1	Advancements and future directions in research of the roles of insulin in amyloid diseases. Biophysical Chemistry, 2022, 281, 106720.	2.8	11
2	Insights into the Interactions that Trigger the Primary Nucleation of Polymorphic α-Synuclein Dimers. ACS Chemical Neuroscience, 2022, 13, 370-378.	3.5	10
3	Molecular insights into the primary nucleation of polymorphic amyloid β dimers in <scp>DOPC</scp> lipid bilayer membrane. Protein Science, 2022, 31, .	7.6	17
4	Molecular Insights into the Effect of Metals on Amyloid Aggregation. Methods in Molecular Biology, 2022, 2340, 121-137.	0.9	1
5	Prodrug-Based Targeting Approach for Inflammatory Bowel Diseases Therapy: Mechanistic Study of Phospholipid-Linker-Cyclosporine PLA2-Mediated Activation. International Journal of Molecular Sciences, 2022, 23, 2673.	4.1	5
6	PLA2-Triggered Activation of Cyclosporine-Phospholipid Prodrug as a Drug Targeting Approach in Inflammatory Bowel Disease Therapy. Pharmaceutics, 2022, 14, 675.	4.5	5
7	Critical surface density of zwitterionic polymer chains affect antifouling properties. Applied Surface Science, 2022, 596, 153652.	6.1	5
8	Molecular Mechanisms and Aspects on the Role of Neuropeptide Y as a Zn2+ and Cu2+ Chelator. Inorganic Chemistry, 2021, 60, 484-493.	4.0	1
9	Neuropeptides: Roles and Activities as Metal Chelators in Neurodegenerative Diseases. Journal of Physical Chemistry B, 2021, 125, 2796-2811.	2.6	22
10	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	47.7	406
11	Tribute to Ruth Nussinov. Journal of Physical Chemistry B, 2021, 125, 6733-6734.	2.6	0
12	Insights into the Mechanistic Perspective Effect of Insulin on the Nonamyloidogenic Component (NAC) and I±-Synuclein Aggregation. ACS Chemical Neuroscience, 2021, 12, 3266-3276.	3.5	7
13	Insulin fibrillation control by specific zinc binding sites. Inorganic Chemistry Frontiers, 2021, 8, 5251-5259.	6.0	4
14	Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures. Journal of Physical Chemistry B, 2021, 125, 12741-12752.	2.6	3
15	Inhibitory Activity of Insulin on Aβ Aggregation Is Restricted Due to Binding Selectivity and Specificity to Polymorphic Aβ States. ACS Chemical Neuroscience, 2020, 11, 445-452.	3.5	14
16	Assessments of the Effect of Neurokinin B on Toxic Aβ Aggregates in Alzheimer's Disease with the Molecular Mechanisms' Action. ACS Chemical Neuroscience, 2020, 11, 3418-3429.	3.5	5
17	Inhibition of Osteoclast Differentiation by Carotenoid Derivatives through Inhibition of the NF-κB Pathway. Antioxidants, 2020, 9, 1167.	5.1	6
18	Controlling the properties and self-assembly of helical nanofibrils by engineering zinc-binding β-hairpin peptides. Journal of Materials Chemistry B, 2020, 8, 7352-7355.	5.8	5

#	Article	IF	CITATIONS
19	Zinc Binding Sites Conserved in Short Neuropeptides Containing a Diphenylalanine Motif. Inorganic Chemistry, 2020, 59, 925-929.	4.0	6
20	Fibrils of α-Synuclein Abolish the Affinity of Cu ²⁺ -Binding Site to His50 and Induce Hopping of Cu ²⁺ lons in the Termini. Inorganic Chemistry, 2019, 58, 10920-10927.	4.0	12
21	Distinct Primary Nucleation of Polymorphic Aβ Dimers Yields to Distinguished Fibrillation Pathways. ACS Chemical Neuroscience, 2019, 10, 4407-4413.	3.5	13
22	Unique Inversion Events of Residues around the Backbone in the Turn Domain of β-Arches in Amylin Fibrils. ACS Chemical Neuroscience, 2019, 10, 1209-1213.	3.5	2
23	Mechanistic perspective and functional activity of insulin in amylin aggregation. Chemical Science, 2018, 9, 4244-4252.	7.4	35
24	Molecular mechanisms of membrane-associated amyloid aggregation: Computational perspective and challenges. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1889-1905.	2.6	40
25	A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nature Communications, 2017, 8, 14018.	12.8	49
26	Two Distinct Polymorphic Folding States of Self-Assembly of the Non-amyloid-β Component Differ in the Arrangement of the Residues. ACS Chemical Neuroscience, 2017, 8, 2613-2617.	3.5	7
27	Emergence of native peptide sequences in prebiotic replication networks. Nature Communications, 2017, 8, 434.	12.8	51
28	Study of Molecular Mechanisms of α-Synuclein Assembly: Insight into a Cross-β Structure in the N-Termini of New α-Synuclein Fibrils. ACS Omega, 2017, 2, 3363-3370.	3.5	18
29	Insight into a New Binding Site of Zinc Ions in Fibrillar Amylin. ACS Chemical Neuroscience, 2017, 8, 2078-2087.	3.5	16
30	Structural Insights into the Polymorphism of Selfâ€Assembled Amylin Oligomers. Israel Journal of Chemistry, 2016, 56, 590-598.	2.3	5
31	How Acidic Is Carbonic Acid?. Journal of Physical Chemistry B, 2016, 120, 2440-2451.	2.6	63
32	The removal of disulfide bonds in amylin oligomers leads to the conformational change of the †̃native' amylin oligomers. Physical Chemistry Chemical Physics, 2016, 18, 12438-12442.	2.8	14
33	Molecular Mechanisms of the Bindings between Non-Amyloid Î ² Component Oligomers and Amylin Oligomers. Journal of Physical Chemistry B, 2016, 120, 10649-10659.	2.6	24
34	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie - International Edition, 2016, 55, 9988-9992.	13.8	44
35	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie, 2016, 128, 10142-10146.	2.0	9
36	Effect of Zn ²⁺ ions on the assembly of amylin oligomers: insight into the molecular mechanisms. Physical Chemistry Chemical Physics, 2016, 18, 21590-21599.	2.8	22

#	Article	IF	CITATIONS
37	Mutagenic induction of an ultra-fast water-chain proton wire. Physical Chemistry Chemical Physics, 2016, 18, 23089-23095.	2.8	1
38	Challenges in studying the structures of metal-amyloid oligomers related to type 2 diabetes, Parkinson's disease, and Alzheimer's disease. Coordination Chemistry Reviews, 2016, 327-328, 20-26.	18.8	21
39	Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases. ACS Chemical Neuroscience, 2016, 7, 46-55.	3.5	49
40	Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path. Journal of Physical Chemistry B, 2016, 120, 2281-2290.	2.6	12
41	Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution I: Acid and Base Coordinate and Charge Dynamics. Journal of Physical Chemistry B, 2016, 120, 2271-2280.	2.6	24
42	The unusual metal ion binding ability of histidyl tags and their mutated derivatives. Dalton Transactions, 2016, 45, 5629-5639.	3.3	26
43	Amylin–Aβ oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Physical Chemistry Chemical Physics, 2016, 18, 2330-2338.	2.8	74
44	Preface to Special Topic: Amyloid Aggregation: Characterization, Function and Molecular Mechanisms. AIP Advances, 2015, 5, 092301.	1.3	0
45	Insight into Atomic Resolution of the Crossâ€5eeding between Tau/Mutated Tau and Amyloidâ€Î² in Neurodegenerative Diseases. Israel Journal of Chemistry, 2015, 55, 628-636.	2.3	6
46	Termini capping of metal-poly-His peptide complexes induces the formation of α-helix. RSC Advances, 2015, 5, 104551-104555.	3.6	2
47	Orientations of Residues along the β-Arch of Self-Assembled Amylin Fibril-Like Structures Lead to Polymorphism. Biomacromolecules, 2015, 16, 156-165.	5.4	46
48	Polymorphism in Self-Assembly of Peptide-Based β-Hairpin Contributes to Network Morphology and Hydrogel Mechanical Rigidity. Journal of Physical Chemistry B, 2015, 119, 482-490.	2.6	37
49	A Proposed Atomic Structure of the Self-Assembly of the Non-Amyloid-β Component of Human α-Synuclein As Derived by Computational Tools. Journal of Physical Chemistry B, 2015, 119, 10005-10015.	2.6	32
50	Spontaneous Structural Transition in Phospholipid-Inspired Aromatic Phosphopeptide Nanostructures. ACS Nano, 2015, 9, 4085-4095.	14.6	19
51	Configuration change from cis to trans of isothiocyanato groups in nickel(II) species: Experimental verification and theoretical interpretation of reaction consequence and study on their bio-activity. Polyhedron, 2015, 93, 55-65.	2.2	4
52	Co-Aggregation of Alpha-Synuclein with Amylin(HIAPP) Leads to an Increased Risk in Type ii Diabetes Patients for Developing Parkinson's Disease. Biophysical Journal, 2015, 108, 524a.	0.5	2
53	African Viper Poly-His Tag Peptide Fragment Efficiently Binds Metal Ions and Is Folded into an α-Helical Structure. Inorganic Chemistry, 2015, 54, 7692-7702.	4.0	35
54	Bacterial Magnetosome Biomineralization - A Novel Platform to Study Molecular Mechanisms of Human CDF-Related Type-II Diabetes. PLoS ONE, 2014, 9, e97154.	2.5	22

#	Article	IF	CITATIONS
55	Preface of the "Symposium on metal binding sites in amyloids". , 2014, , .		0
56	Carotenoid derivatives inhibit nuclear factor kappa B activity in bone and cancer cells by targeting key thiol groups. Free Radical Biology and Medicine, 2014, 75, 105-120.	2.9	56
57	The unusual binding mechanism of Cu(<scp>ii</scp>) ions to the poly-histidyl domain of a peptide found in the venom of an African viper. Dalton Transactions, 2014, 43, 16680-16689.	3.3	25
58	Insight into the structure and the mechanism of the slow proton transfer in the GFP double mutant T203V/S205A. Physical Chemistry Chemical Physics, 2014, 16, 11211-11223.	2.8	19
59	The influence of the ΔK280 mutation and N- or C-terminal extensions on the structure, dynamics, and fibril morphology of the tau R2 repeat. Physical Chemistry Chemical Physics, 2014, 16, 7710.	2.8	24
60	Insight into the Coordination and the Binding Sites of Cu ²⁺ by the Histidyl-6-Tag using Experimental and Computational Tools. Inorganic Chemistry, 2014, 53, 6675-6683.	4.0	49
61	Cation Diffusion Facilitators Transport Initiation and Regulation Is Mediated by Cation Induced Conformational Changes of the Cytoplasmic Domain. PLoS ONE, 2014, 9, e92141.	2.5	41
62	Proton Transfer in Wild-Type GFP and S205V Mutant Is Reduced by Conformational Changes of Residues in the Proton Wire. Journal of Physical Chemistry B, 2013, 117, 11921-11931.	2.6	21
63	Effects of mutations in de novo designed synthetic amphiphilic β-sheet peptides on self-assembly of fibrils. Chemical Communications, 2013, 49, 6561.	4.1	29
64	Molecular Modeling: Advancements and Applications. Journal of Chemistry, 2013, 2013, 1-2.	1.9	4
65	Interactions between AÎ ² and Mutated Tau Lead to Polymorphism and Induce Aggregation of AÎ ² -Mutated Tau Oligomeric Complexes. PLoS ONE, 2013, 8, e73303.	2.5	46
66	Metal binding sites in amyloid oligomers: Complexes and mechanisms. Coordination Chemistry Reviews, 2012, 256, 2245-2252.	18.8	95
67	Synergistic Interactions between Repeats in Tau Protein and AÎ ² Amyloids May Be Responsible for Accelerated Aggregation via Polymorphic States. Biochemistry, 2011, 50, 5172-5181.	2.5	95
68	The Unique Alzheimer's β-Amyloid Triangular Fibril Has a Cavity along the Fibril Axis under Physiological Conditions. Journal of the American Chemical Society, 2011, 133, 2742-2748.	13.7	62
69	Conformational transitions of glycine induced by vibrational excitation of the O–H stretch. Physical Chemistry Chemical Physics, 2011, 13, 8715-8722.	2.8	19
70	Molecular-Level Examination of Cu ²⁺ Binding Structure for Amyloid Fibrils of 40-Residue Alzheimer's β by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2011, 133, 3390-3400.	13.7	182
71	Reaction of OH and NO at Low Temperatures in the Presence of Water: the Role of Clusters. Zeitschrift Fur Physikalische Chemie, 2011, 225, 1129-1144.	2.8	6
72	Hollow core of Alzheimer's A <i>β</i> ₄₂ amyloid observed by cryoEM is relevant at physiological pH. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14128-14133.	7.1	81

#	Article	IF	CITATIONS
73	Polymorphism in Alzheimer Aβ Amyloid Organization Reflects Conformational Selection in a Rugged Energy Landscape. Chemical Reviews, 2010, 110, 4820-4838.	47.7	265
74	Zinc ions promote Alzheimer AÎ ² aggregation via population shift of polymorphic states. Proceedings of the United States of America, 2010, 107, 9490-9495.	7.1	283
75	Structure of Large Nitrateâ^'Water Clusters at Ambient Temperatures: Simulations with Effective Fragment Potentials and Force Fields with Implications for Atmospheric Chemistry. Journal of Physical Chemistry A, 2009, 113, 12805-12814.	2.5	47
76	lonization of N ₂ O ₄ in Contact with Water: Mechanism, Time Scales and Atmospheric Implications. Journal of the American Chemical Society, 2009, 131, 12180-12185.	13.7	72
77	Polymorphism of Alzheimer's Al 2 17-42 (p3) Oligomers: The Importance of the Turn Location and Its Conformation. Biophysical Journal, 2009, 97, 1168-1177.	0.5	91
78	Ultrafast phase transitions in metastable water near liquid interfaces. Faraday Discussions, 2009, 141, 67-79.	3.2	24
79	Critical Size for Intracluster Proton Transfer from Water to an Anion. Angewandte Chemie - International Edition, 2008, 47, 6272-6274.	13.8	14
80	Complexes of HNO3 and NO3â^' with NO2 and N2O4, and their potential role in atmospheric HONO formation. Physical Chemistry Chemical Physics, 2008, 10, 6019.	2.8	39
81	Dynamics of proton recombination with NO3â^ anion in water clusters. Physical Chemistry Chemical Physics, 2008, 10, 1091.	2.8	26
82	Dynamics of Vibrational Overtone Excitations of H2SO4, H2SO4â^'H2O:Â Hydrogenâ^'Hopping and Photodissociation Processes. Journal of the American Chemical Society, 2006, 128, 9594-9595.	13.7	70
83	A zinc-dependent switching mechanism from an open to a new closed-state conformation of insulin-degrading enzyme. Inorganic Chemistry Frontiers, 0, , .	6.0	1