
Hanlin Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/295193/publications.pdf Version: 2024-02-01

ΗΛΝΙΙΝ ΗΠ

#	Article	IF	CITATIONS
1	Stable Highâ€Performance Perovskite Solar Cells via Grain Boundary Passivation. Advanced Materials, 2018, 30, e1706576.	21.0	665
2	Recent progress in morphology optimization in perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 21356-21386.	10.3	159
3	Hybrid Perovskite Thinâ€Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases. Advanced Materials, 2017, 29, 1604113.	21.0	155
4	Efficient White Photoluminescence from Self-Trapped Excitons in Sb ³⁺ /Bi ³⁺ -Codoped Cs ₂ NaInCl ₆ Double Perovskites with Tunable Dual-Emission. ACS Energy Letters, 2021, 6, 3343-3351.	17.4	126
5	Precise Control of Perovskite Crystallization Kinetics via Sequential Aâ€Site Doping. Advanced Materials, 2020, 32, e2004630.	21.0	122
6	Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1578-1603.	10.3	112
7	Vertical Phase Separation in Small Molecule:Polymer Blend Organic Thin Film Transistors Can Be Dynamically Controlled. Advanced Functional Materials, 2016, 26, 1737-1746.	14.9	98
8	Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport. ACS Energy Letters, 2019, 4, 534-541.	17.4	96
9	Roomâ€Temperature Meniscus Coating of >20% Perovskite Solar Cells: A Film Formation Mechanism Investigation. Advanced Functional Materials, 2019, 29, 1900092.	14.9	92
10	Propylammonium Chloride Additive for Efficient and Stable FAPbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2102538.	19.5	84
11	Entanglements in marginal solutions: a means of tuning pre-aggregation of conjugated polymers with positive implications for charge transport. Journal of Materials Chemistry C, 2015, 3, 7394-7404.	5.5	75
12	Recent progress of all-polymer solar cells – From chemical structure and device physics to photovoltaic performance. Materials Science and Engineering Reports, 2020, 140, 100542.	31.8	75
13	Advances in Lead-Free Perovskite Single Crystals: Fundamentals and Applications. , 2021, 3, 1025-1080.		70
14	Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells. Nano Energy, 2019, 60, 275-284.	16.0	57
15	A Cryogenic Process for Antisolventâ€Free Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2018, 30, e1804402.	21.0	47
16	Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells. Nano Energy, 2015, 17, 196-205.	16.0	43
17	Highly efficient organic solar cells based on a robust room-temperature solution-processed copper iodide hole transporter. Nano Energy, 2015, 16, 458-469.	16.0	41
18	Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering. ACS Energy Letters, 2018, 3, 1307-1314.	17.4	40

Hanlin Hu

#	Article	IF	CITATIONS
19	Printing Highâ€Efficiency Perovskite Solar Cells in Highâ€Humidity Ambient Environment—An In Situ Guided Investigation. Advanced Science, 2021, 8, 2003359.	11.2	40
20	Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science and Applications, 2021, 10, 239.	16.6	40
21	Mesostructured Fullerene Electrodes for Highly Efficient n–i–p Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1049-1056.	17.4	37
22	Enhanced Electron Transport and Heat Transfer Boost Light Stability of Ternary Organic Photovoltaic Cells Incorporating Nonâ€Fullerene Small Molecule and Polymer Acceptors. Advanced Electronic Materials, 2019, 5, 1900497.	5.1	37
23	Recent Progress in 2D/3D Multidimensional Metal Halide Perovskites Solar Cells. Frontiers in Materials, 2020, 7, .	2.4	33
24	Highly Crystalline Near-Infrared Acceptor Enabling Simultaneous Efficiency and Photostability Boosting in High-Performance Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 48095-48102.	8.0	30
25	One-Dimensional Organic–Metal Halide with Highly Efficient Warm White-Light Emission and Its Moisture-Induced Structural Transformation. Chemistry of Materials, 2021, 33, 5668-5674.	6.7	30
26	Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaics—A Realâ€Time Phaseâ€Transition Study. Advanced Materials, 2021, 33, e2006238.	21.0	30
27	Recent Progress in Ionic Liquids for Stability Engineering of Perovskite Solar Cells. Small Structures, 2022, 3, .	12.0	30
28	Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells. Nano Energy, 2016, 28, 277-287.	16.0	27
29	Facile Doping and Workâ€Function Modification of Fewâ€Layer Graphene Using Molecular Oxidants and Reductants. Advanced Functional Materials, 2017, 27, 1602004.	14.9	25
30	Advance and prospect of metal-organic frameworks for perovskite photovoltaic devices. Organic Electronics, 2022, 106, 106546.	2.6	24
31	Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied Physics Letters, 2017, 110, 223903.	3.3	23
32	Charge carrier transport and nanomorphology control for efficient non-fullerene organic solar cells. Materials Today Energy, 2019, 12, 398-407.	4.7	23
33	Mixed Dimensional Perovskites Heterostructure for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	23
34	Ionic Liquid Engineering in Perovskite Photovoltaics. Energy and Environmental Materials, 2023, 6, .	12.8	18
35	Tuning electrolyte solvation structures to enable stable aqueous Al/MnO2 battery. Energy Storage Materials, 2022, 47, 113-121.	18.0	16
36	Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates. ACS Applied Materials & Interfaces, 2016, 8, 19649-19657.	8.0	15

Hanlin Hu

#	Article	IF	CITATIONS
37	Design of All-Small-Molecule Organic Solar Cells Approaching 14% Efficiency via Isometric Terminal Alkyl Chain Engineering. Energies, 2021, 14, 2505.	3.1	14
38	Selective, Stable Production of Ethylene Using a Pulsed Cu-Based Electrode. ACS Applied Materials & Interfaces, 2022, 14, 19388-19396.	8.0	14
39	Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110870.	6.2	12
40	Flexible Perovskite Solar Cells: Progress and Prospects. Frontiers in Materials, 2021, 8, .	2.4	10
41	Conjugated polymers with controllable interfacial order and energetics enable tunable heterojunctions in organic and colloidal quantum dot photovoltaics. Journal of Materials Chemistry A, 2022, 10, 1788-1801.	10.3	6
42	A Novel 4,4'-Bipiperidine-Based Organic Salt for Efficient and Stable 2D-3D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22324-22331.	8.0	6
43	Challenges and Opportunities for the Blue Perovskite Quantum Dot Light-Emitting Diodes. Crystals, 2022, 12, 929.	2.2	6
44	Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano Research, 2022, 15, 3647-3652.	10.4	5
45	Manipulation of Crystallization Kinetics for Perovskite Photovoltaics Prepared Using Two-Step Method. Crystals, 2022, 12, 815.	2.2	4
46	Ultra-low p-doping of poly(3-hexylthiophene) and its impact on polymer aggregation and photovoltaic performance. Organic Photonics and Photovoltaics, 2016, 4, .	1.3	3
47	Perovskite Photovoltaics: Hybrid Perovskite Thinâ€Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases (Adv. Mater. 2/2017). Advanced Materials, 2017, 29, .	21.0	3
48	High Speed Coating Method for Fabricating Organic Solar Cells with PCE>10%. , 0, , .		0