

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2948887/publications.pdf Version: 2024-02-01

LINC YU

#	Article	IF	CITATIONS
1	Structured Reduced Graphene Oxide/Polymer Composites for Ultraâ€Efficient Electromagnetic Interference Shielding. Advanced Functional Materials, 2015, 25, 559-566.	14.9	1,007
2	Conductive polymer composites with segregated structures. Progress in Polymer Science, 2014, 39, 1908-1933.	24.7	617
3	Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon, 2019, 144, 101-108.	10.3	186
4	Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. Journal of Membrane Science, 2014, 464, 110-118.	8.2	170
5	Robustly Superhydrophobic Conductive Textile for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2019, 11, 1680-1688.	8.0	136
6	Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polymer International, 2012, 61, 1107-1114.	3.1	132
7	Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS Applied Materials & Interfaces, 2019, 11, 37094-37102.	8.0	116
8	Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 40156-40167.	8.0	108
9	Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2018, 110, 237-245.	7.6	93
10	Stretchable Liquid Metal-Based Conductive Textile for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 53230-53238.	8.0	85
11	Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Composites Science and Technology, 2019, 181, 107695.	7.8	83
12	Extensional Stress-Induced Orientation and Crystallization can Regulate the Balance of Toughness and Stiffness of Polylactide Films: Interplay of Oriented Amorphous Chains and Crystallites. Macromolecules, 2019, 52, 5278-5288.	4.8	79
13	Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. Journal of Materials Chemistry C, 2019, 7, 9018-9024.	5.5	79
14	Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. Journal of Materials Chemistry A, 2013, 1, 4177.	10.3	75
15	Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials, 2014, 35, 6687-6697.	11.4	69
16	Tuning the Superstructure of Ultrahigh-Molecular-Weight Polyethylene/Low-Molecular-Weight Polyethylene Blend for Artificial Joint Application. ACS Applied Materials & Interfaces, 2012, 4, 1521-1529.	8.0	66
17	Wearable Polyethylene/Polyamide Composite Fabric for Passive Human Body Cooling. ACS Applied Materials & Interfaces, 2018, 10, 41637-41644.	8.0	65
18	Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin. Acta Biomaterialia, 2019, 96, 674-685.	8.3	62

Ling Xu

#	Article	IF	CITATIONS
19	Ultrahigh gas barrier poly (vinyl alcohol) nanocomposite film filled with congregated and oriented Fe 3 O 4 @CO sheets induced by magnetic-field. Composites Part A: Applied Science and Manufacturing, 2017, 97, 1-9.	7.6	48
20	Hydrophobic Graphene Oxide as a Promising Barrier of Water Vapor for Regenerated Cellulose Nanocomposite Films. ACS Omega, 2019, 4, 509-517.	3.5	46
21	In Situ Nanofibrillar Networks Composed of Densely Oriented Polylactide Crystals as Efficient Reinforcement and Promising Barrier Wall for Fully Biodegradable Poly(butylene succinate) Composite Films. ACS Sustainable Chemistry and Engineering, 2016, 4, 2887-2897.	6.7	43
22	Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling. ACS Applied Materials & amp; Interfaces, 2021, 13, 25325-25333.	8.0	39
23	Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures. Journal of Materials Science, 2013, 48, 4892-4898.	3.7	36
24	Multifunctional Membrane for Thermal Management Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 19301-19311.	8.0	36
25	Improved performance balance of polyethylene by simultaneously forming oriented crystals and blending ultrahigh-molecular-weight polyethylene. RSC Advances, 2014, 4, 1512-1520.	3.6	35
26	Ultrathin, flexible and sandwich-structured PHBV/silver nanowire films for high-efficiency electromagnetic interference shielding. Journal of Materials Chemistry C, 2021, 9, 3307-3315.	5.5	34
27	Efficient electromagnetic interference shielding of lightweight carbon nanotube/polyethylene composites <i>via</i> compression molding plus salt-leaching. RSC Advances, 2018, 8, 8849-8855.	3.6	33
28	The Role of Melt Memory and Template Effect in Complete Stereocomplex Crystallization and Phase Morphology of Polylactides. Crystal Growth and Design, 2018, 18, 1613-1621.	3.0	32
29	Enhanced Mechanical Performance of Segregated Carbon Nanotube/Poly(lactic acid) Composite for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2019, 58, 4454-4461.	3.7	32
30	Constructing robust chain entanglement network, well-defined nanosized crystals and highly aligned graphene oxide nanosheets: Towards strong, ductile and high barrier Poly(lactic acid) nanocomposite films for green packaging. Composites Part B: Engineering, 2021, 222, 109048.	12.0	29
31	Inducing Stereocomplex Crystals by Template Effect of Residual Stereocomplex Crystals during Thermal Annealing of Injection-Molded Polylactide. Industrial & Engineering Chemistry Research, 2016, 55, 10896-10905.	3.7	28
32	Carbonized cotton textile with hierarchical structure for superhydrophobicity and efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106555.	7.6	28
33	Dual-functional thermal management materials for highly thermal conduction and effectively heat generation. Composites Part B: Engineering, 2022, 242, 110084.	12.0	27
34	Gradient Structure of Crystalline Morphology in Injection-Molded Polylactide Parts Tuned by Oscillation Shear Flow and Its Influence on Thermomechanical Performance. Industrial & Engineering Chemistry Research, 2017, 56, 6295-6306.	3.7	25
35	Facile Construction of a Superhydrophobic Surface on a Textile with Excellent Electrical Conductivity and Stretchability. Industrial & Engineering Chemistry Research, 2020, 59, 7546-7553.	3.7	25
36	Green Production of Covalently Functionalized Boron Nitride Nanosheets via Saccharide-Assisted Mechanochemical Exfoliation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11155-11162.	6.7	23

Ling Xu

#	Article	IF	CITATIONS
37	Polyaniline-decorated carbon fibers for enhanced mechanical and electromagnetic interference shielding performances of epoxy composites. Materials and Design, 2022, 217, 110658.	7.0	22
38	Superhydrophobic, Self-Cleaning, and Robust Properties of Oriented Polylactide Imparted by Surface Structuring. ACS Sustainable Chemistry and Engineering, 2021, 9, 6296-6304.	6.7	21
39	Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol). Carbohydrate Polymers, 2018, 179, 244-251.	10.2	20
40	Promoting osteoblast proliferation on polymer bone substitutes with bone-like structure by combining hydroxyapatite and bioactive glass. Materials Science and Engineering C, 2019, 96, 1-9.	7.3	19
41	A nacre-mimetic superstructure of poly(butylene succinate) structured by using an intense shear flow and ramie fiber as a promising strategy for simultaneous reinforcement and toughening. Journal of Materials Chemistry A, 2017, 5, 22697-22707.	10.3	18
42	Robust hydrogel of regenerated cellulose by chemical crosslinking coupled with polyacrylamide network. Journal of Applied Polymer Science, 2019, 136, 47811.	2.6	17
43	Structure and Properties of All-Cellulose Composites Prepared by Controlling the Dissolution Temperature of a NaOH/Urea Solvent. Industrial & Engineering Chemistry Research, 2020, 59, 10428-10435.	3.7	17
44	Highly Efficient Three-Dimensional Gas Barrier Network for Biodegradable Nanocomposite Films at Extremely Low Loading Levels of Graphene Oxide Nanosheets. Industrial & Engineering Chemistry Research, 2020, 59, 5818-5827.	3.7	16
45	Robust cellulose nanocomposite films based on covalently cross-linked network with effective resistance to water permeability. Carbohydrate Polymers, 2019, 211, 237-248.	10.2	15
46	Nanotopographical polymeric surface with mussel-inspired decoration to enhance osteoblast differentiation. Applied Surface Science, 2019, 481, 987-993.	6.1	15
47	Tunable liquid sensing performance of conducting carbon nanotube–polyethylene composites with a porous segregated structure. RSC Advances, 2013, 3, 19802.	3.6	14
48	Humidity sensitive cellulose composite aerogels with enhanced mechanical performance. Cellulose, 2020, 27, 6287-6297.	4.9	13
49	Non-isothermal crystallization kinetics of alkyl-functionalized graphene oxide/high-density polyethylene nanocomposites. Composite Interfaces, 2014, 21, 203-215.	2.3	12
50	Temperature dependence of molecular conformation in uniaxially deformed isotactic polypropylene investigated by combination of polarized FTIR spectroscopy and 2D correlation analysis. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 673-684.	2.1	12
51	Surface Epitaxial Crystallization-Directed Nanotopography for Accelerating Preosteoblast Proliferation and Osteogenic Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 42956-42963.	8.0	12
52	Crystallization behavior and morphology of one-step reaction compatibilized microfibrillar reinforced isotactic polypropylene/poly(ethylene terephthalate) (iPP/PET) blends. Chinese Journal of Polymer Science (English Edition), 2011, 29, 540-551.	3.8	11
53	Robust propylene-ethylene copolymer/polypropylene films: Extensional stress-induced orientation realized at low temperature processing. Polymer, 2020, 206, 122848.	3.8	11
54	Coupling Effect of Mechanical and Thermal Rejuvenation for Polystyrene: Toward High Performance of Stiffness, Ductility, and Transparency. Macromolecules, 2021, 54, 8875-8885.	4.8	11

Ling Xu

#	Article	IF	CITATIONS
55	Influence of surface polarity of carbon nanotubes on electric field induced aligned conductive network formation in a polymer melt. RSC Advances, 2013, 3, 24185.	3.6	10
56	Enhanced toughness and strength of conductive cellulose-poly(butylene succinate) films filled with multiwalled carbon nanotubes. Cellulose, 2014, 21, 1803-1812.	4.9	10
57	Influences of interfacial adhesion on gas barrier property of functionalized graphene oxide/ultra-high-molecular-weight polyethylene composites with segregated structure. Composite Interfaces, 2017, 24, 729-741.	2.3	10
58	Simultaneously improving stiffness, toughness, and heat deflection resistance of polylactide using the strategy of orientation crystallization amplified by interfacial interactions. Polymer Crystallization, 2018, 1, e10004.	0.8	10
59	Short implants versus longer implants in the posterior alveolar region after an observation period of at least five years: A systematic review and meta-analysis. Journal of Dentistry, 2020, 100, 103386.	4.1	10
60	Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point. Polymer Bulletin, 2019, 76, 3371-3385.	3.3	9
61	Robust, transparent films of propyleneâ^'ethylene copolymer through isotropic-orientation transition at low temperature accelerated by adjustment of ethylene contents. Polymer, 2020, 187, 122099.	3.8	9
62	Superior Ductile and High-barrier Poly(lactic acid) Films by Constructing Oriented Nanocrystals as Efficient Reinforcement of Chain Entanglement Network and Promising Barrier Wall. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1201-1212.	3.8	9
63	Effects of dodecyl amine functionalized graphene oxide on the crystallization behavior of isotactic polypropylene. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
64	Confined crystallization of poly(butylene succinate) intercalated into organoclays: role of surfactant polarity. RSC Advances, 2016, 6, 68072-68080.	3.6	7
65	Flow-Induced Precursor Formation of Poly(<scp>l</scp> -lactic acid) under Pressure. ACS Omega, 2018, 3, 15471-15481.	3.5	7
66	Polylactide porous biocomposites with high heat resistance by utilizing cellulose template-directed construction. Cellulose, 2020, 27, 3805-3819.	4.9	7
67	Enhanced melt-recrystallization process of propylene-ethylene copolymer during the uniaxial stretching with the aid of isotactic polypropylene. Polymer, 2022, 239, 124443.	3.8	7
68	Interconnected Microdomain Structure of a Cross-Linked Cellulose Nanocomposite Revealed by Micro-Raman Imaging and Its Influence on Water Permeability of a Film. Biomacromolecules, 2019, 20, 2754-2762.	5.4	6
69	Unique Banded Cylindrites of Polyoxymethylene/Poly(butylene succinate) Blends Induced by Interfacial Shear. ACS Applied Polymer Materials, 2019, 1, 2741-2750.	4.4	4
70	Evolution of Polymorphic Structure in β-Nucleated Isotactic Polypropylene under a Certain Pressure: Effects of Temperature and Flow. Industrial & Engineering Chemistry Research, 2019, 58, 5677-5685.	3.7	4
71	Quantitative Investigation on Structural Evolution of Co-continuous Phase under Shear Flow. Chinese Journal of Polymer Science (English Edition), 2022, 40, 593-601.	3.8	3
72	Role of pressure in flowâ€induced shishâ€kabab in binary blend of long―and shortâ€chain Polyethylenes. Polymer Crystallization, 2019, 2, e10059.	0.8	1

#	Article	IF	CITATIONS
73	Crystallization of isotactic polypropylene inside dense networks of carbon nanofillers. Journal of Applied Polymer Science, 2014, 131, .	2.6	0