Juan Lema

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/294794/publications.pdf

Version: 2024-02-01

316 papers 18,552 citations

71
h-index

119 g-index

321 all docs

 $\begin{array}{c} 321 \\ \text{docs citations} \end{array}$

times ranked

321

15350 citing authors

#	Article	IF	CITATIONS
1	Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 2004, 38, 2918-2926.	11.3	1,277
2	Removal of Pharmaceutical and Personal Care Products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 2010, 44, 3214-3224.	11.3	406
3	Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science and Technology, 2017, 67, 220-235.	15.1	392
4	How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters?. Reviews in Environmental Science and Biotechnology, 2008, 7, 125-138.	8.1	365
5	Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Applied Energy, 2016, 179, 1251-1268.	10.1	333
6	Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 2007, 41, 2139-2150.	11.3	332
7	Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Current Opinion in Biotechnology, 2015, 33, 103-111.	6.6	268
8	Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Research, 2008, 42, 287-295.	11.3	265
9	Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresource Technology, 2009, 100, 2138-2146.	9.6	264
10	Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Research, 1993, 27, 1361-1376.	11.3	250
11	A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource Technology, 2010, 101, 1153-1158.	9.6	238
12	Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Research, 2005, 39, 4790-4796.	11.3	229
13	Influence of nitrifying conditions on the biodegradation andÂsorption of emerging micropollutants. Water Research, 2012, 46, 5434-5444.	11.3	225
14	Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. Journal of Hazardous Materials, 2014, 278, 506-513.	12.4	224
15	Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology, 2000, 74, 231-239.	9.6	223
16	Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena. Enzyme and Microbial Technology, 1995, 17, 180-188.	3.2	221
17	Modeling product formation in anaerobic mixed culture fermentations. Biotechnology and Bioengineering, 2006, 93, 592-606.	3.3	196
18	Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiological Research, 2012, 167, 581-589.	5. 3	186

#	Article	IF	Citations
19	Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochemical Engineering Journal, 2010, 51, 124-131.	3.6	185
20	The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresource Technology, 2010, 101, 8581-8586.	9.6	182
21	Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chemistry, 1994, 49, 271-286.	8.2	179
22	Evaluation of Extracts from Gevuina avellana Hulls as Antioxidants. Journal of Agricultural and Food Chemistry, 2000, 48, 3890-3897.	5.2	165
23	Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 2006, 64, 408-414.	8.2	154
24	Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere, 2008, 72, 1118-1123.	8.2	154
25	Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. Water Research, 2002, 36, 2555-2560.	11.3	149
26	Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination, 2008, 221, 511-517.	8.2	147
27	Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Science of the Total Environment, 2018, 615, 297-306.	8.0	146
28	Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?. Water Research, 2016, 102, 211-220.	11.3	140
29	Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World Journal of Microbiology and Biotechnology, 2011, 27, 1839-1846.	3.6	136
30	Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Water Research, 2013, 47, 6739-6749.	11.3	133
31	Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Research, 1999, 33, 3281-3290.	11.3	128
32	Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions. Science of the Total Environment, 2016, 541, 1439-1447.	8.0	125
33	Environmental assessment of anaerobically digested sludge reuse in agriculture: Potential impacts of emerging micropollutants. Water Research, 2010, 44, 3225-3233.	11.3	121
34	Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor. Water Research, 2011, 45, 5323-5333.	11.3	119
35	Influence of ozone pre-treatment on sludge anaerobic digestion: Removal of pharmaceutical and personal care products. Chemosphere, 2007, 67, 1444-1452.	8.2	117
36	Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresource Technology, 1995, 54, 269-278.	9.6	116

#	Article	IF	Citations
37	Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresource Technology, 2015, 197, 208-216.	9.6	114
38	Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renewable Energy, 2014, 68, 625-635.	8.9	109
39	Fungal pretreatment of agricultural residues for bioethanol production. Industrial Crops and Products, 2016, 89, 486-492.	5.2	108
40	Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Water Research, 2005, 39, 771-778.	11.3	107
41	Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: Production, partial characterization and application for the elimination of endocrine disruptors. Bioresource Technology, 2011, 102, 6593-6599.	9.6	106
42	Removal of Estrogenic Compounds from Filtered Secondary Wastewater Effluent in a Continuous Enzymatic Membrane Reactor. Identification of Biotransformation Products. Environmental Science & Environmental &	10.0	105
43	Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy and Environmental Science, 2013, 6, 3780.	30.8	104
44	Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply. Biodegradation, 2012, 23, 145-156.	3.0	103
45	Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Science and Technology, 2006, 53, 109-117.	2.5	98
46	Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 2011, 22, 539-550.	3.0	97
47	Degradation of volatile fatty acids by differently enriched methanogenic cultures: Kinetics and inhibition. Water Research, 1995, 29, 505-509.	11.3	96
48	A packed-bed fungal bioreactor for the continuous decolourisation of azo-dyes (Orange II). Journal of Biotechnology, 2001, 89, 99-106.	3.8	95
49	Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere, 2005, 61, 528-536.	8.2	92
50	Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation. Journal of Biotechnology, 2002, 99, 249-257.	3.8	90
51	Oxidative Degradation of Azo Dyes by Manganese Peroxidase under Optimized Conditions. Biotechnology Progress, 2003, 19, 325-331.	2.6	90
52	Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ 1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry. Analytical Biochemistry, 2004, 335, 135-149.	2.4	90
53	Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnology Letters, 2000, 22, 1499-1503.	2.2	89
54	Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation, 2012, 23, 373-386.	3.0	89

#	Article	IF	Citations
55	Mass balance of pharmaceutical and personal care products in a pilot-scale single-sludge system: Influence of T, SRT and recirculation ratio. Chemosphere, 2012, 89, 164-171.	8.2	89
56	Granulation in high-load denitrifying upflow sludge bed (USB) pulsed reactors. Water Research, 2006, 40, 871-880.	11.3	88
57	Calculation Methods to Perform Mass Balances of Micropollutants in Sewage Treatment Plants. Application to Pharmaceutical and Personal Care Products (PPCPs). Environmental Science & Eamp; Technology, 2007, 41, 884-890.	10.0	88
58	Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. Journal of Biotechnology, 2000, 77, 235-245.	3.8	87
59	Nitrification at high ammonia loading rates in an activated sludge unit. Bioresource Technology, 1999, 68, 141-148.	9.6	82
60	Biodegradation kinetic constants and sorption coefficients of micropollutants in membrane bioreactors. Biodegradation, 2013, 24, 165-177.	3.0	82
61	Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion. Biotechnology for Biofuels, 2016, 9, 244.	6.2	81
62	In vitro degradation of a polymeric dye (Poly Râ€478) by manganese peroxidase. Biotechnology and Bioengineering, 2001, 75, 362-368.	3.3	79
63	Anaerobic treatment of azo dye Acid Orange 7 under batch conditions. Enzyme and Microbial Technology, 2005, 36, 264-272.	3.2	79
64	Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process. Water Research, 2015, 68, 701-709.	11.3	78
65	Antioxidant activity of extracts from Gevuina avellana and Rosa rubiginosa defatted seeds. Food Research International, 2001, 34, 103-109.	6.2	77
66	Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. Journal of Hazardous Materials, 2012, 213-214, 175-183.	12.4	77
67	Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Science of the Total Environment, 2016, 551-552, 640-648.	8.0	77
68	A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants. Chemosphere, 2016, 144, 452-458.	8.2	77
69	Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. International Biodeterioration and Biodegradation, 2007, 60, 319-326.	3.9	76
70	Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochemical Engineering Journal, 2015, 93, 250-259.	3.6	75
71	Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion. Science of the Total Environment, 2018, 622-623, 459-466.	8.0	75
72	Influence of C:N ratio on the start-up of up-flow anaerobic filter reactors. Water Research, 2000, 34, 2614-2619.	11.3	74

#	Article	IF	Citations
73	Dye Decolorization by Manganese Peroxidase in an Enzymatic Membrane Bioreactor. Biotechnology Progress, 2008, 20, 74-81.	2.6	74
74	Optimization of solvent extraction of antioxidants from Eucalyptus globulus leaves by response surface methodology: Characterization and assessment of their bioactive properties. Industrial Crops and Products, 2017, 108, 649-659.	5. 2	74
75	Enzyme-assisted hexane extraction of soya bean oil. Food Chemistry, 1995, 54, 223-231.	8.2	72
76	Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains. Journal of Biotechnology, 1997, 53, 237-251.	3.8	72
77	Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry. Water Research, 2001, 35, 411-418.	11.3	71
78	Biotransformation of organic micropollutants by anaerobic sludge enzymes. Water Research, 2019, 152, 202-214.	11.3	71
79	Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. International Biodeterioration and Biodegradation, 2006, 58, 15-21.	3.9	69
80	Microbial catabolic activities are naturally selected by metabolic energy harvest rate. ISME Journal, 2015, 9, 2630-2641.	9.8	69
81	Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors. Water Research, 2014, 65, 371-383.	11.3	68
82	Advanced technologies for water treatment and reuse. AICHE Journal, 2015, 61, 3146-3158.	3.6	67
83	Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations. Water Research, 2020, 169, 115258.	11.3	67
84	Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess and Biosystems Engineering, 2013, 36, 1251-1260.	3.4	66
85	Organic overloading affects the microbial interactions during anaerobic digestion in sewage sludge reactors. Chemosphere, 2019, 222, 323-332.	8.2	66
86	Semiâ€micro C.O.D. determination method for highâ€salinity wastewater. Environmental Technology Letters, 1989, 10, 541-548.	0.4	64
87	Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochemistry, 2007, 42, 641-648.	3.7	63
88	Cometabolic Enzymatic Transformation of Organic Micropollutants under Methanogenic Conditions. Environmental Science & Environ	10.0	63
89	Treatment of seafood-processing wastewaters in mesophilic and thermophilic anaerobic filters. Water Environment Research, 1995, 67, 33-45.	2.7	61
90	Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Research, 2002, 36, 1896-1901.	11.3	61

#	Article	IF	CITATIONS
91	Complete degradation of anthracene by Manganese Peroxidase in organic solvent mixtures. Enzyme and Microbial Technology, 2005, 37, 365-372.	3.2	61
92	Metabolic Energy-Based Modelling Explains Product Yielding in Anaerobic Mixed Culture Fermentations. PLoS ONE, 2015, 10, e0126739.	2.5	61
93	Operation of stirred tank reactors (STRs) and fixed-bed reactors (FBRs) with free and immobilized Phanerochaete chrysosporium for the continuous removal of pharmaceutical compounds. Biochemical Engineering Journal, 2012, 66, 38-45.	3.6	60
94	Immobilization of laccase by encapsulation in a sol–gel matrix and its characterization and use for the removal of estrogens. Biotechnology Progress, 2011, 27, 1570-1579.	2.6	59
95	Energy-based models for environmental biotechnology. Trends in Biotechnology, 2008, 26, 366-374.	9.3	58
96	Enzymatic saccharification of alkali-treated sunflower hulls. Bioresource Technology, 1994, 49, 53-59.	9.6	56
97	Optimization of the enzymatic treatment during aqueous oil extraction from sunflower seeds. Food Chemistry, 1998, 61, 467-474.	8.2	56
98	Aqueous processing of sunflower kernels with enzymatic technology. Food Chemistry, 1995, 53, 427-434.	8.2	55
99	Treatment of saline wastewaters from fish meal factories in an anaerobic filter under extreme ammonia concentrations. Bioresource Technology, 1997, 61, 69-78.	9.6	55
100	Strategies for the continuous production of ligninolytic enzymes in fixed and fluidised bed bioreactors. Journal of Biotechnology, 1998, 66, 27-39.	3.8	55
101	Rule-based diagnosis and supervision of a pilot-scale wastewater treatment plant using fuzzy logic techniques. Expert Systems With Applications, 2002, 22, 11-20.	7.6	55
102	Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige. Journal of Hazardous Materials, 2006, 137, 1523-1531.	12.4	54
103	Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige. Journal of Hazardous Materials, 2007, 147, 914-922.	12.4	54
104	Application of a combined fungal and diluted acid pretreatment on olive tree biomass. Industrial Crops and Products, 2018, 121, 10-17.	5.2	54
105	A new device for measurement and control of gas production by bench scale anaerobic digesters. Water Research, 1990, 24, 1551-1554.	11.3	53
106	Decolorization of ion-exchange effluents derived from sugar-mill operations by Bjerkandera sp.BOS55. International Biodeterioration and Biodegradation, 1997, 40, 125-129.	3.9	53
107	Protein recovery during the overall treatment of wastewaters from fish-meal factories. Bioresource Technology, 1998, 63, 221-229.	9.6	53
108	Cell immobilization: Application to alcohol production. Enzyme and Microbial Technology, 1987, 9, 642-651.	3.2	52

#	Article	IF	Citations
109	Iron removal from kaolin. Comparison between "in situ―and "two-stage―bioleaching processes. Hydrometallurgy, 2003, 68, 97-105.	4.3	52
110	On the use of a high-redox potential laccase as an alternative for the transformation of non-steroidal anti-inflammatory drugs (NSAIDs). Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 233-242.	1.8	52
111	Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Management, 2015, 35, 96-104.	7.4	52
112	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 309-320.	3.6	51
113	Enhanced methane production from pig manure anaerobic digestion using fish and biodiesel wastes as co-substrates. Bioresource Technology, 2012, 123, 507-513.	9.6	51
114	Continuous anaerobic treatment of wastewaters containing formaldehyde and urea. Bioresource Technology, 1999, 70, 283-291.	9.6	50
115	Outlining microbial community dynamics during temperature drop and subsequent recovery period in anaerobic co-digestion systems. Journal of Biotechnology, 2014, 192, 179-186.	3.8	50
116	Assessing the feasibility of two hybrid MBR systems using PAC for removing macro and micropollutants. Journal of Environmental Management, 2017, 203, 831-837.	7.8	50
117	Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems. Water Research, 2018, 142, 115-128.	11.3	50
118	Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow. Application to Aspergillus niger and Phanerochaete chrysosporium. Enzyme and Microbial Technology, 1996, 19, 261-266.	3.2	49
119	Biodegradation of Pentachlorophenol in Soil Slurry Cultures byBjerkandera adustaandAnthracophyllumdiscolor. Industrial & Engineering Chemistry Research, 2007, 46, 6744-6751.	3.7	49
120	Biodegradability and toxicity in the anaerobic treatment of fish canning wastewaters. Environmental Technology (United Kingdom), 1991, 12, 669-677.	2.2	48
121	Simultaneous urea hydrolysis, formaldehyde removal and denitrification in a multifed upflow filter under anoxic and anaerobic conditions. Water Research, 2001, 35, 691-698.	11.3	48
122	Enzymic pre-treatment of Guevina avellana mol oil extraction by pressing. Process Biochemistry, 2003, 39, 51-57.	3.7	48
123	Comparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent post-treatment on vertical flow reed beds. Water Science and Technology, 2011, 63, 2411-2417.	2.5	48
124	Variable stoichiometry with thermodynamic control in ADM1. Water Science and Technology, 2006, 54, 101-110.	2.5	47
125	Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Applied Microbiology and Biotechnology, 2015, 99, 8815-8829.	3.6	47
126	Diagnosis of acidification states in an anaerobic wastewater treatment plant using a fuzzy-based expert system. Control Engineering Practice, 2004, 12, 59-64.	5 . 5	46

#	Article	IF	CITATIONS
127	Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: The link between environmental impacts and operational parameters. Science of the Total Environment, 2014, 497-498, 475-483.	8.0	46
128	Improving the catalytic performance of laccase using a novel continuous-flow microreactor. Chemical Engineering Journal, 2013, 223, 497-506.	12.7	45
129	Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Environmental Science and Pollution Research, 2016, 23, 3217-3228.	5.3	45
130	Blending based optimisation and pretreatment strategies to enhance anaerobic digestion of poultry manure. Waste Management, 2018, 71, 521-531.	7.4	44
131	Oil extractability from enzymatically treated soybean and sunflower: range of operational variables. Food Chemistry, 1993, 46, 277-284.	8.2	43
132	An expert system for monitoring and diagnosis of anaerobic wastewater treatment plants. Water Research, 2002, 36, 2656-2666.	11.3	43
133	Role of exopolymeric protein on the settleability of nitrifying sludges. Bioresource Technology, 2004, 94, 43-48.	9.6	43
134	Effect of surfactants on the soil desorption of hexachlorocyclohexane (HCH) isomers and their anaerobic biodegradation. Journal of Chemical Technology and Biotechnology, 2005, 80, 1005-1015.	3.2	43
135	Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations. Water Research, 2018, 141, 349-356.	11.3	43
136	Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports. Journal of Biotechnology, 2012, 162, 404-406.	3.8	42
137	Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode. Bioresource Technology, 2013, 150, 172-180.	9.6	42
138	Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. Journal of Hazardous Materials, 2020, 389, 121888.	12.4	42
139	Coupled BAS and anoxic USB system to remove urea and formaldehyde from wastewater. Water Research, 2003, 37, 3445-3451.	11.3	41
140	Influence of Different Pretreatments on Anaerobically Digested Sludge Characteristics: Suitability for Final Disposal. Water, Air, and Soil Pollution, 2009, 199, 311-321.	2.4	41
141	Trends in organic micropollutants removal in secondary treatment of sewage. Reviews in Environmental Science and Biotechnology, 2018, 17, 447-469.	8.1	41
142	Green approaches for the extraction of antioxidants from eucalyptus leaves. Industrial Crops and Products, 2019, 138, 111473.	5.2	41
143	Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming. Bioresource Technology, 2014, 173, 159-167.	9.6	40
144	Covalent immobilisation of manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55. Enzyme and Microbial Technology, 2003, 32, 769-775.	3.2	38

#	Article	IF	Citations
145	Solvent screening methodology for in situ ABE extractive fermentation. Applied Microbiology and Biotechnology, 2014, 98, 5915-5924.	3.6	38
146	The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants. Journal of Hazardous Materials, 2016, 308, 29-36.	12.4	38
147	Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps. Water Research, 1997, 31, 2487-2494.	11.3	37
148	Biodegradation of formaldehyde under anaerobic conditions. Enzyme and Microbial Technology, 1999, 24, 255-262.	3.2	37
149	Generalised modelling approach for anaerobic co-digestion of fermentable substrates. Bioresource Technology, 2013, 147, 525-533.	9.6	37
150	Enzymatic treatment of sunflower kernels before oil extraction. Food Research International, 1995, 28, 537-545.	6.2	36
151	A systematic methodology for the robust quantification of energy efficiency at wastewater treatment plants featuring Data Envelopment Analysis. Water Research, 2018, 141, 317-328.	11.3	36
152	Degradation of high molecular weight compounds of Kraft pulp mill effluents by a combined treatment with fungi and bacteria. Biotechnology Letters, 1995, 17, 1261-1266.	2.2	35
153	Manganese Removal from Spiked Kaolinitic Soil and Sludge by Electromigration. Separation Science and Technology, 1999, 34, 3227-3241.	2.5	35
154	Risk assessment of persistent pharmaceuticals in biosolids: Dealing with uncertainty. Journal of Hazardous Materials, 2016, 302, 72-81.	12.4	35
155	Thermal hydrolysis of sewage sludge partially removes organic micropollutants but does not enhance their anaerobic biotransformation. Science of the Total Environment, 2019, 690, 534-542.	8.0	35
156	Fuzzy-Based Control of an Anaerobic Reactor Treating Wastewaters Containing Ethanol and Carbohydrates. Industrial & Engineering Chemistry Research, 2007, 46, 6707-6715.	3.7	34
157	Anaerobic Treatment of Eucalyptus Fiberboard Manufacturing Wastewater by a Hybrid USBF Lab-Scale Reactor. Environmental Technology (United Kingdom), 1995, 16, 677-684.	2.2	33
158	Methanogenic degradation of p-cresol in batch and in continuous UASB reactors. Water Research, 1997, 31, 1549-1554.	11.3	32
159	Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes. Applied Microbiology and Biotechnology, 2014, 98, 2015-2027.	3.6	32
160	Continuous removal of endocrine disruptors by versatile peroxidase using a twoâ€stage system. Biotechnology Progress, 2015, 31, 908-916.	2.6	32
161	Microbiome response to controlled shifts in ammonium and LCFA levels in co-digestion systems. Journal of Biotechnology, 2016, 220, 35-44.	3.8	32
162	Selection of variables for on-line monitoring, diagnosis, and control of anaerobic digestion processes. Water Science and Technology, 2009, 60, 615-622.	2.5	31

#	Article	IF	Citations
163	Metabolic modeling for predicting VFA production from proteinâ€rich substrates by mixedâ€culture fermentation. Biotechnology and Bioengineering, 2020, 117, 73-84.	3.3	31
164	Simultaneous biodegradation of p-cresol and phenol by the basidiomycetePhanerochaete chrysosporium. Journal of Industrial Microbiology, 1994, 13, 311-314.	0.9	30
165	Pilot-Scale Validation of a New Sensor for On-Line Analysis of Volatile Fatty Acids and Alkalinity in Anaerobic Wastewater Treatment Plants. Environmental Engineering Science, 2009, 26, 641-649.	1.6	30
166	Production of lignin peroxidase by Phanerochaete chrysosporium in a packed bed bioreactor operated in semi-continuous mode. Journal of Biotechnology, 1995, 42, 247-253.	3.8	29
167	Continuous production of manganese peroxidase byPhanerochaete chrysosporium immobilized on polyurethane foam in a pulsed packed-bed bioreactor., 1997, 56, 130-137.		29
168	An anaerobic bioreactor allows the efficient degradation of HCH isomers in soil slurry. Chemosphere, 2006, 63, 1005-1013.	8.2	29
169	Winery effluent treatment at an anaerobic hybrid USBF pilot plant under normal and abnormal operation. Water Science and Technology, 2007, 56, 25-31.	2.5	29
170	Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidase. Chemosphere, 2007, 66, 1744-1751.	8.2	29
171	Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents. Applied Microbiology and Biotechnology, 2015, 99, 9299-9308.	3.6	29
172	What happens with organic micropollutants during UV disinfection in WWTPs? A global perspective from laboratory to full-scale. Journal of Hazardous Materials, 2018, 342, 670-678.	12.4	29
173	The time response of anaerobic digestion microbiome during an organic loading rate shock. Applied Microbiology and Biotechnology, 2018, 102, 10285-10297.	3.6	29
174	A comparison of two techniques (adsorption and entrapment) for the immobilization of Aspergillus niger in polyurethane foam. Biotechnology Letters, 1994, 8, 389-394.	0.5	28
175	The influence of substrate structure on the kinetics of the hydrolysis of starch by glucoamylase. Applied Biochemistry and Biotechnology, 1996, 59, 329-336.	2.9	28
176	Use of cheese whey as a substrate to produce manganese peroxidase by Bjerkandera sp BOS55. Journal of Industrial Microbiology and Biotechnology, 1999, 23, 86-90.	3.0	28
177	Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds. New Biotechnology, 2016, 33, 187-195.	4.4	28
178	Characterization of biomass from a pilot plant digester treating saline wastewater. Journal of Chemical Technology and Biotechnology, 1995, 63, 384-392.	3.2	27
179	Anaerobic treatment of fibreboard manufacturing wastewaters in a pilot scale hybrid usbf reactor. Water Research, 2001, 35, 4150-4158.	11.3	27
180	Effect of pH on the stability of Pleurotus eryngii versatile peroxidase during heterologous production in Emericella nidulans. Bioprocess and Biosystems Engineering, 2004, 26, 287-293.	3.4	27

#	Article	lF	Citations
181	Influence of the employment of adsorption and coprecipitation agents for the removal of PPCPs in conventional activated sludge (CAS) systems. Water Science and Technology, 2010, 62, 728-735.	2.5	27
182	Enhancing thermophilic co-digestion of nitrogen-rich substrates by air side-stream stripping. Bioresource Technology, 2017, 241, 397-405.	9.6	27
183	Degradation of major compounds of creosotes (PAH and phenols) byPhanerochaete chrysosporium. Biotechnology Letters, 1994, 16, 759-764.	2.2	26
184	Selection of variables using factorial discriminant analysis for the state identification of an anaerobic UASB–UAF hybrid pilot plant, fed with winery effluents. Water Science and Technology, 2007, 56, 139-145.	2.5	26
185	Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess and Biosystems Engineering, 2009, 32, 129-134.	3.4	26
186	Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure. Waste Management, 2018, 77, 276-286.	7.4	26
187	Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurations. Waste Management, 2019, 92, 30-38.	7.4	26
188	Oxidation of lignin in eucalyptus kraft pulp by manganese peroxidase from Bjerkandera sp. strain BOS55. Bioresource Technology, 2001, 78, 71-79.	9.6	25
189	A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World Journal of Microbiology and Biotechnology, 2011, 27, 115-122.	3.6	25
190	Reversibility of enzymatic reactions might limit biotransformation of organic micropollutants. Science of the Total Environment, 2019, 665, 574-578.	8.0	25
191	A metabolic model for targeted volatile fatty acids production by cofermentation of carbohydrates and proteins. Bioresource Technology, 2020, 298, 122535.	9.6	25
192	Mass transfer control of enzymatic hydrolysis of polysaccharides by glucoamylase. Enzyme and Microbial Technology, 1991, 13, 142-147.	3.2	24
193	Use of a fungal bioreactor as a pretreatment or post-treatment step for continuous decolorisation of dyes. Water Science and Technology, 1999, 40, 131.	2.5	24
194	Manganese peroxidase production by Bjerkandera sp. BOS55. Bioprocess and Biosystems Engineering, 2000, 23, 657-661.	3.4	24
195	Surfactant-assisted two phase partitioning bioreactors for laccase-catalyzed degradation of anthracene. Process Biochemistry, 2012, 47, 1115-1121.	3.7	24
196	Alcoholic fermentation of xylose by immobilized Pichia stipitis in a fixed-bed pulsed bioreactor. Enzyme and Microbial Technology, 1994, 16, 72-78.	3.2	23
197	Study of mass transfer and biocatalyst stability for the enzymatic degradation of anthracene in a two-phase partitioning bioreactor. Biochemical Engineering Journal, 2010, 51, 79-85.	3.6	23
198	Ethanolic fermentation by immobilized Saccharomyces cerevisiae in a semipilot pulsing packed-bed bioreactor. Enzyme and Microbial Technology, 1996, 19, 132-139.	3.2	22

#	Article	IF	CITATIONS
199	A hydrogen-based variable-gain controller for anaerobic digestion processes. Water Science and Technology, 2006, 54, 57-62.	2.5	22
200	Strategies for the design and operation of enzymatic reactors for the degradation of highly and poorly soluble recalcitrant compounds. Biocatalysis and Biotransformation, 2007, 25, 260-268.	2.0	22
201	Oxalic acid production by. Bioprocess and Biosystems Engineering, 1998, 19, 247.	0.5	22
202	Inhibition of cellulase activity by sun_ower polyphenols. Biotechnology Letters, 1997, 19, 521-524.	2.2	21
203	Microstructural features of enzymatically treated oilseeds., 1998, 78, 491-497.		21
204	Characterization and comparison of biomasses from single- and multi-fed upflow anaerobic filters. Bioresource Technology, 1999, 68, 293-300.	9.6	21
205	Electrochemical Treatment of a Polluted Sludge: Different Methods and Conditions for Manganese Removal. Separation Science and Technology, 2005, 39, 3679-3689.	2.5	21
206	Bioencapsulated probiotics increased survival, growth and improved gut flora of turbot (Psetta) Tj ETQq0 0 0 rgl	3T <u>l</u> Overlo	ck <u>10</u> Tf 50 4
207	Control strategy for maximum anaerobic co-digestion performance. Water Research, 2015, 80, 209-216.	11.3	21
208	Effect of nitrogen and/or oxygen concentration on poly(3-hydroxybutyrate) accumulation by Halomonas boliviensis. Bioprocess and Biosystems Engineering, 2016, 39, 1365-1374.	3.4	21
209	The ManureEcoMine pilot installation: advanced integration of technologies for the management of organics and nutrients in livestock waste. Water Science and Technology, 2017, 75, 1281-1293.	2.5	21
210	Semipilot-scale bleaching of Kraft pulp with manganese peroxide. Wood Science and Technology, 2003, 37, 117-123.	3.2	20
211	Characterization of anaerobic granular sludge developed in UASB reactors that treat ethanol, carbohydrates and hydrolyzed protein based wastewaters. Water Science and Technology, 2008, 57, 837-842.	2.5	20
212	Enhanced Saccharification of Biologically Pretreated Wheat Straw for Ethanol Production. Applied Biochemistry and Biotechnology, 2013, 169, 1147-1159.	2.9	20
213	Vegetable oils as NAPLs in two phase partitioning bioreactors for the degradation of anthracene by laccase. Chemical Engineering Journal, 2014, 240, 281-289.	12.7	20
214	Effect of oxygen on the microbial activities of thermophilic anaerobic biomass. Bioresource Technology, 2016, 211, 765-768.	9.6	20
215	Kinetic modelling of isomerization and anaerobic degradation of n- and i-butyrate. Journal of Bioscience and Bioengineering, 1990, 69, 261-264.	0.9	19
216	A pulsing device for packed-bed bioreactors: I. Hydrodynamic behaviour. Bioprocess and Biosystems Engineering, 1994, 10, 61-73.	0.5	19

#	Article	IF	Citations
217	Nitrous oxide production under toxic conditions in a denitrifying anoxic filter. Water Research, 1998, 32, 2550-2552.	11.3	19
218	Characterization, management and treatment of wastewater from white wine production. Water Science and Technology, 2007, 56, 121-128.	2.5	19
219	Dynamic modeling of an enzymatic membrane reactor for the treatment of xenobiotic compounds. Biotechnology and Bioengineering, 2007, 97, 1128-1137.	3.3	19
220	Evaluation of the enzyme manganese peroxidase in an industrial sequence for the lignin oxidation and bleaching of eucalyptus kraft pulp. Journal of Applied Polymer Science, 2008, 109, 1319-1327.	2.6	19
221	Fermentation of Biologically Pretreated Wheat Straw for Ethanol Production: Comparison of Fermentative Microorganisms and Process Configurations. Applied Biochemistry and Biotechnology, 2013, 170, 1838-1852.	2.9	19
222	Airâ€side ammonia stripping coupled to anaerobic digestion indirectly impacts anaerobic microbiome. Microbial Biotechnology, 2019, 12, 1403-1416.	4.2	19
223	Optimization of the hardening treatment of S. cerevisiae bioparticles. Enzyme and Microbial Technology, 1990, 12, 749-754.	3.2	18
224	A pulsing device for packed-bed bioreactors: II. Application to alcoholic fermentation. Bioprocess and Biosystems Engineering, 1994, 10, 75-81.	0.5	18
225	Enhanced catalytic properties of MnP by exogenous addition of manganese and hydrogen peroxide. Biotechnology Letters, 1997, 19, 263-268.	2.2	18
226	Simple methods for the determination of the denitrifying activity of sludges. Bioresource Technology, 2000, 75, 1-6.	9.6	18
227	Continuous Removal of Nonylphenol by Versatile Peroxidase in a Two-Stage Membrane Bioreactor. Applied Biochemistry and Biotechnology, 2015, 175, 3038-3047.	2.9	18
228	Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnology Letters, 2015, 37, 577-584.	2.2	18
229	Population Dynamics of a Continuous Fermentation of Recombinant Saccharomyces cerevisiae Using Flow Cytometry. Biotechnology Progress, 2001, 17, 951-957.	2.6	17
230	Occurrence and fate of pharmaceutical and personal care products in a sewage treatment works. Journal of Environmental Monitoring, 2011, 13, 137-144.	2.1	17
231	Fate of pharmaceuticals in soil after application of STPs products: Influence of physicochemical properties and modelling approach. Chemosphere, 2017, 182, 406-415.	8.2	17
232	Anaerobic treatment of landfill leachates: Kinetics and stoichiometry. Environmental Technology Letters, 1987, 8, 555-564.	0.4	16
233	Leaching of kaolin iron-oxides with organic acids. Journal of Chemical Technology and Biotechnology, 1997, 70, 349-354.	3.2	16
234	Evaluation of natural zeolite as microorganism support medium in nitrifying batch reactors: Influence of zeolite particle size. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 420-427.	1.7	16

#	Article	IF	Citations
235	Feasibility of spent metalworking fluids as co-substrate for anaerobic co-digestion. Bioresource Technology, 2014, 155, 281-288.	9.6	16
236	Enzymatic hydrolysis of starch in a fixed-bed pulsed-flow reactor. Applied Biochemistry and Biotechnology, 1991, 28-29, 527-538.	2.9	15
237	Enzymatic reactors for the removal of recalcitrant compounds in wastewater. Biocatalysis and Biotransformation, 2018, 36, 195-215.	2.0	15
238	Leaching of iron from kaolins by a spent fermentation liquor: Influence of temperature, pH, agitation and citric acid concentration. Journal of Industrial Microbiology, 1995, 14, 288-292.	0.9	14
239	Advanced monitoring of an anaerobic pilot plant treating high strength wastewaters. Water Science and Technology, 1999, 40, 237.	2.5	14
240	Manganese Peroxidase production by Bjerkandera sp. BOS55. Bioprocess and Biosystems Engineering, 2000, 23, 663-667.	3.4	14
241	Comprehensive investigation of the enzymatic oligomerization of esculin by laccase in ethanol : water mixtures. RSC Advances, 2017, 7, 38424-38433.	3 . 6	14
242	Formulation of Laccase Nanobiocatalysts Based on Ionic and Covalent Interactions for the Enhanced Oxidation of Phenolic Compounds. Applied Sciences (Switzerland), 2017, 7, 851.	2.5	14
243	Sequential reactors for the removal of endocrine disrupting chemicals by laccase immobilized onto fumed silica microparticles. Biocatalysis and Biotransformation, 2018, 36, 254-264.	2.0	14
244	Determination of the adequate minimum model complexity required in anaerobic bioprocesses using experimental data. Journal of Chemical Technology and Biotechnology, 2008, 83, 1694-1702.	3.2	13
245	Life cycle assessment of \hat{l}^2 -Galactosidase enzyme production. Journal of Cleaner Production, 2017, 165, 204-212.	9.3	13
246	A combination of ammonia stripping and low temperature thermal pre-treatment improves anaerobic post-digestion of the supernatant from organic fraction of municipal solid waste treatment. Waste Management, 2018, 78, 271-278.	7.4	13
247	Resource allocation explains lactic acid production in mixedâ€culture anaerobic fermentations. Biotechnology and Bioengineering, 2021, 118, 745-758.	3.3	13
248	Title is missing!. Biotechnology Letters, 2000, 22, 1247-1250.	2.2	12
249	Economic comparison of enzymatic reactors and advanced oxidation processes applied to the degradation of phenol as a model compound. Biocatalysis and Biotransformation, 2011, 29, 344-353.	2.0	12
250	Biocatalytic generation of Mn(III)â€chelate as a chemical oxidant of different environmental contaminants. Biotechnology Progress, 2011, 27, 668-676.	2.6	12
251	Production of poly(3-hydroxybutyrate) by simultaneous saccharification and fermentation of cereal mash using Halomonas boliviensis. Biochemical Engineering Journal, 2016, 114, 140-146.	3.6	12
252	Laccase Activity as an Essential Factor in the Oligomerization of Rutin. Catalysts, 2018, 8, 321.	3.5	12

#	Article	IF	Citations
253	Continuous fermentation of d-xylose by immobilizedpichia stipitis comparison between cstr and cpfr. Applied Biochemistry and Biotechnology, 1991, 28-29, 731-739.	2.9	11
254	Production of lignin peroxidase fromPhanerochaete chrysosporium in a packed bed bioreactor with recycling. Biotechnology Letters, 1994, 8, 363-368.	0.5	11
255	Production of Manganese Peroxidase by free pellets of Phanerochaete chrysosporium in an Expanded-Bed Bioreactor. Biotechnology Letters, 1995, 9, 371-376.	0.5	11
256	Effect of addition of extracellular culture fluid on ligninolytic enzyme formation in Phanerochaete chrysosporium. Journal of Biotechnology, 1995, 40, 21-29.	3.8	11
257	Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor. Water Science and Technology, 1997, 36, 157.	2.5	11
258	Combined System for Biological Removal of Nitrogen and Carbon from a Fish Cannery Wastewater. Journal of Environmental Engineering, ASCE, 2003, 129, 826-833.	1.4	11
259	Is the presence of dicarboxylic acids required in the MnP cycle?. Enzyme and Microbial Technology, 2007, 42, 70-75.	3.2	11
260	Application of response surface methodology to study the removal of estrogens in a laccase-mediated continuous membrane reactor. Biocatalysis and Biotransformation, 2013, 31, 197-207.	2.0	11
261	Scaleâ€up and economic analysis of the production of ligninolytic enzymes from a sideâ€stream of the organosolv process. Journal of Chemical Technology and Biotechnology, 2018, 93, 3125-3134.	3.2	11
262	Product inhibition of fermentation of xylose to ethanol by free and immobilized Pichia stipitis. Enzyme and Microbial Technology, 1994, 16, 622-626.	3.2	10
263	Automatic Start-Up of UASB Reactors. Journal of Environmental Engineering, ASCE, 2001, 127, 397-402.	1.4	10
264	Enzymatic degradation of low soluble compounds in monophasic water:solvent reactors. Kinetics and modeling of anthracene degradation by MnP. Biotechnology and Bioengineering, 2008, 100, 619-626.	3.3	10
265	Coupling extraction and enzyme catalysis for the removal of anthracene present in polluted soils. Biochemical Engineering Journal, 2015, 93, 289-293.	3.6	10
266	A new decentralized biological treatment process based on activated carbon targeting organic micropollutant removal from hospital wastewaters. Environmental Science and Pollution Research, 2020, 27, 1214-1223.	5.3	10
267	The effect of kaolin particles on the behavior of nitrifying activated sludge units. Bioresource Technology, 2002, 81, 225-231.	9.6	9
268	Altered Clostridia response in extractive ABE fermentation with solvents of different nature. Biochemical Engineering Journal, 2020, 154, 107455.	3.6	9
269	"Who Cares?― The Acceptance of Decentralized Wastewater Systems in Regions without Water Problems. International Journal of Environmental Research and Public Health, 2020, 17, 9060.	2.6	9
270	Microbial inefficient substrate use through the perspective of resource allocation models. Current Opinion in Biotechnology, 2021, 67, 130-140.	6.6	9

#	Article	IF	Citations
271	A double-feed anaerobic filter for the treatment of high strength wastewaters. Biotechnology Letters, 1994, 8, 77-82.	0.5	8
272	Hydraulic model of a gas-lift bioreactor with flocculating yeast. Bioprocess and Biosystems Engineering, 1995, 12, 269-272.	0.5	8
273	Hydrolysis of microcrystalline cellulose by cellulolytic complex of Trichoderma reesei in low-moisture media. Enzyme and Microbial Technology, 1995, 17, 809-815.	3.2	8
274	Use of White-Rot Fungi for Valorization of Stillage From Bioethanol Production. Waste and Biomass Valorization, 2012, 3, 295-303.	3.4	8
275	Removal of Pharmaceuticals by Membrane Bioreactor (MBR) Technology. Comprehensive Analytical Chemistry, 2013, , 287-317.	1.3	8
276	Development of a Superparamagnetic Laccase Nanobiocatalyst for the Enzymatic Biotransformation of Xenobiotics. Journal of Environmental Engineering, ASCE, 2018, 144, 04018007.	1.4	8
277	Fate and removal of pharmaceuticals and personal care products (PPCPs) in a conventional activated sludge treatment process. , 2010, , .		8
278	Anaerobic treatment of wastewater from a fish-canning factory in a full-scale upflow anaerobic sludge blanket (UASB) reactor. Water Science and Technology, 1999, 40, 57.	2.5	7
279	Title is missing!. Biotechnology Letters, 2002, 24, 791-794.	2.2	7
280	Autopilot Abstraction and Standardization for Seamless Integration of Unmanned Aircraft System Applications. Journal of Aerospace Computing, Information, and Communication, 2011, 8, 197-223.	0.8	7
281	Activation of Kraft Lignin by an Enzymatic Treatment with a Versatile Peroxidase from Bjerkandera sp. R1. Applied Biochemistry and Biotechnology, 2013, 169, 1262-1278.	2.9	7
282	Simultaneous valorization and detoxification of the hemicellulose rich liquor from the organosolv fractionation. International Biodeterioration and Biodegradation, 2018, 126, 112-118.	3.9	7
283	An optimised control system to steer the transition from anaerobic mono- to co-digestion in full-scale plants. Environmental Science: Water Research and Technology, 2019, 5, 1004-1011.	2.4	7
284	Continuous ethanolic fermentation by Saccharomyces cerevisiae immobilised in Ca-alginate beads hardened with Al3+. Biotechnology Letters, 1995, 9, 815-820.	0.5	6
285	Multi-Fed Upflow Anaerobic Filter: Development and Features. Journal of Environmental Engineering, ASCE, 1998, 124, 1188-1192.	1.4	6
286	Anaerobic and aerobic continuous cultures of Saccharomyces cerevisiae: comparison of plasmid stability and EXG1 gene expression. Bioprocess and Biosystems Engineering, 2004, 26, 159-163.	3.4	6
287	Application of flow cytometry for monitoring the production of poly(3â€hydroxybutyrate) by ⟨i>Halomonas boliviensis⟨ i>. Biotechnology Progress, 2017, 33, 276-284.	2.6	6
288	A novel enzyme catalysis reactor based on superparamagnetic nanoparticles for biotechnological applications. Journal of Environmental Chemical Engineering, 2018, 6, 5950-5960.	6.7	6

#	Article	IF	CITATIONS
289	Opportunities for rotating belt filters in novel wastewater treatment plant configurations. Environmental Science: Water Research and Technology, 2019, 5, 704-712.	2.4	6
290	Microbial invasions in sludge anaerobic digesters. Applied Microbiology and Biotechnology, 2021, 105, 21-33.	3 . 6	6
291	The ethanol tolerance of pichia stipitis Y-7124 studied by microcalorimetry. Thermochimica Acta, 1990, 172, 163-169.	2.7	5
292	Acute toxicity of hardboard mill effluents to different bioindicators., 1997, 12, 39-42.		5
293	Enhanced Start-Up of Upflow Anaerobic Filters by Pulsation. Journal of Environmental Engineering, ASCE, 2007, 133, 186-190.	1.4	5
294	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
295	Operational strategies for producing bioethanol in a continuous single-stage reactor. Bioprocess and Biosystems Engineering, 2013, 36, 1929-1937.	3.4	5
296	Immobilization of Aspergillus niger and Phanerochaete chrysosporium on polyurethane foam Progress in Biotechnology, 1996, , 132-135.	0.2	4
297	Biofiltration of a methanol containing air stream in a dry tubular biofilm reactor using ceramic rings as carrier. Environmental Progress, 2008, 27, 117-124.	0.7	4
298	Lessons learned from the treatment of organosolv pulp with ligninolytic enzymes and chemical delignification agents. Cellulose, 2018, 25, 763-776.	4.9	4
299	Assessment of the fate of organic micropollutants in novel wastewater treatment plant configurations through an empirical mechanistic model. Science of the Total Environment, 2020, 716, 137079.	8.0	4
300	The D-xylose fermenting capacities of immobilizedPichia stipitis andPachysolen tannophilus. Biotechnology Letters, 1989, 11, 353-358.	2.2	3
301	Anaerobic digestion process parameter identification and marginal confidence intervals by multivariate steady state analysis and bootstrap. Computer Aided Chemical Engineering, 2005, 20, 1327-1332.	0.5	3
302	Polymerization of coniferyl alcohol by Mn ³⁺ â€mediated (enzymatic) oxidation: Effects of H ₂ O ₂ concentration, aqueous organic solvents, and pH. Biotechnology Progress, 2018, 34, 81-90.	2.6	3
303	Reactor Engineering. , 2010, , 245-290.		3
304	A simple flow meter for bioreactors applicable to oscillating feed systems. Biotechnology Letters, 1994, 8, 793-796.	0.5	2
305	Determination of inhibitory effects in fermentation processes by microcalorimetric techniques. Biotechnology Letters, 1995, 9, 231-236.	0.5	2
306	Effect of pulsation on morphology of Aspergillus niger and Phanerochaete chrysosporium in a fluidized-bed reactor. Progress in Biotechnology, 1996, , 518-523.	0.2	2

#	Article	IF	CITATIONS
307	Continuous fermentation by conventional and recombinant Saccharomyces cerevisiae immobilized in Ca-alginate beads hardened with trivalent ion. Progress in Biotechnology, 1996, , 173-180.	0.2	2
308	Application of a threeâ€compartment model as a tool to understand the partition of 17αâ€ethinylestradiol in mixed liquor systems. Environmental Progress and Sustainable Energy, 2013, 32, 257-262.	2.3	2
309	Operation of an innovative WWTP with environmental objectives. A model-based analysis. IFAC-PapersOnLine, 2016, 49, 539-543.	0.9	2
310	Plasmid stability in recombinant Saccharomyces cerevisiae expressing the EXG1 gene in free and immobilized cultures. Progress in Biotechnology, 1998, 15, 611-618.	0.2	1
311	Organosolv pretreated beech wood as a substrate for acetone butanol ethanol extractive fermentation. Holzforschung, 2018, 73, 55-64.	1.9	1
312	Dynamic simulation of an airâ€"water wetted wall column: Comparison of experimental and numerical results. Computers and Chemical Engineering, 1987, 11, 311-317.	3.8	0
313	Influence of hydraulic retention time on the psychrophilic hydrolysis/acidogenesis of proteins. Water Science and Technology, 2016, 74, 2399-2406.	2.5	О
314	Measuring Energy Demand and Efficiency at WWTPs: An Econometric Approach. Lecture Notes in Civil Engineering, 2017, , 404-411.	0.4	0
315	Targeted conversion of protein and glucose waste streams to volatile fatty acids by metabolic models. IFAC-PapersOnLine, 2019, 52, 175-180.	0.9	0
316	Oxalic acid production by. Bioprocess and Biosystems Engineering, 1998, 19, 337.	0.5	0