Alexander J Whitworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2947725/publications.pdf

Version: 2024-02-01

64 papers 15,772 citations

36 h-index

101543

62 g-index

75 all docs

75 docs citations

75 times ranked 26102 citing authors

#	Article	IF	CITATIONS
1	A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit. Nature Communications, 2022, 13, 929.	12.8	13
2	Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster. Scientific Reports, 2022, 12, 4594.	3.3	13
3	An assessment of the rescue action of resveratrol in parkin loss of function-induced oxidative stress in Drosophila melanogaster. Scientific Reports, 2022, 12, 3922.	3.3	15
4	DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron  depletion. EMBO Journal, 2022, 41, e109390.	7.8	22
5	Decreasing pdzd8-mediated mito–ER contacts improves organismal fitness and mitigates Aβ ₄₂ toxicity. Life Science Alliance, 2022, 5, e202201531.	2.8	20
6	Comment on "mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than <i>mito</i> -QC― Autophagy, 2021, 17, 4477-4479.	9.1	4
7	DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biology, 2021, 41, 101884.	9.0	18
8	SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2021, 16, 53.	10.8	13
9	Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and Biology, 2021, 67, 126779.	3.0	60
10	Mutation in the MICOS subunit gene <i>APOO</i> (MIC26) associated with an X-linked recessive mitochondrial myopathy, lactic acidosis, cognitive impairment and autistic features. Journal of Medical Genetics, 2021, 58, 155-167.	3 . 2	28
11	Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiology of Disease, 2020, 134, 104678.	4.4	87
12	Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes. PLoS Genetics, 2020, 16, e1008844.	3. 5	14
13	The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Drosophila Pink1/parkin or mtDNA mutator models. Scientific Reports, 2020, 10, 2693.	3.3	20
14	Antioxidant Therapy in Parkinson's Disease: Insights from Drosophila melanogaster. Antioxidants, 2020, 9, 52.	5.1	19
15	Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nature Communications, 2019, 10, 3280.	12.8	23
16	Comprehensive Genetic Characterization of Mitochondrial Ca2+ Uniporter Components Reveals Their Different Physiological Requirements InÂVivo. Cell Reports, 2019, 27, 1541-1550.e5.	6.4	46
17	Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Science Alliance, 2019, 2, e201900392.	2.8	22
18	Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. Human Molecular Genetics, 2018, 27, 1618-1629.	2.9	28

#	Article	IF	Citations
19	Basal mitophagy is widespread in <i>Drosophila</i> but minimally affected by loss of Pink1 or parkin. Journal of Cell Biology, 2018, 217, 1613-1622.	5.2	253
20	Characterization of Drosophila ATPsynC mutants as a new model of mitochondrial ATP synthase disorders. PLoS ONE, 2018, 13, e0201811.	2.5	7
21	Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson's Disease. , 2018, 9, 716.		42
22	The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson's Disease. Cell Reports, 2018, 23, 2976-2988.	6.4	239
23	PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo ?. Current Opinion in Genetics and Development, 2017, 44, 47-53.	3.3	143
24	Enhancing Mitofusin/Marf ameliorates neuromuscular dysfunction in Drosophila models of TDP-43 proteinopathies. Neurobiology of Aging, 2017, 54, 71-83.	3.1	35
25	Mechanisms of Parkinson's Disease. Current Topics in Developmental Biology, 2017, 121, 173-200.	2.2	79
26	SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nature Communications, 2017, 8, 16063.	12.8	106
27	The C9orf72 protein interacts with Rab1a and the <scp>ULK</scp> 1 complex to regulate initiation of autophagy. EMBO Journal, 2016, 35, 1656-1676.	7.8	327
28	Axonal transport defects are a common phenotype in <i>Drosophila</i> models of ALS. Human Molecular Genetics, 2016, 25, ddw105.	2.9	88
29	Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Scientific Reports, 2016, 6, 31380.	3.3	133
30	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
31	Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity. Journal of Biological Chemistry, 2016, 291, 9257-9267.	3.4	56
32	<i>VPS35</i> pathogenic mutations confer no dominant toxicity but partial loss of function in <i>Drosophila</i> and genetically interact with <i>parkin</i> . Human Molecular Genetics, 2015, 24, 6106-6117.	2.9	67
33	Mitochondrial defects and neuromuscular degeneration caused by altered expression of Drosophila Gdap1: implications for the Charcot–Marie–Tooth neuropathy. Human Molecular Genetics, 2015, 24, 21-36.	2.9	37
34	The Complex I Subunit NDUFA10 Selectively Rescues Drosophila pink1 Mutants through a Mechanism Independent of Mitophagy. PLoS Genetics, 2014, 10, e1004815.	3.5	68
35	<i>SREBF1</i> links lipogenesis to mitophagy and sporadic Parkinson disease. Autophagy, 2014, 10, 1476-1477.	9.1	33
36	Effects of Five Ayurvedic Herbs on Locomotor Behaviour in a <scp><i>Drosophila melanogaster</i></scp> Parkinson's Disease Model. Phytotherapy Research, 2014, 28, 1789-1795.	5.8	37

#	Article	IF	CITATIONS
37	Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus <i>SREBF1</i> as a regulator of mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8494-8499.	7.1	109
38	Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nature Communications, 2014, 5, 5245.	12.8	229
39	The many faces of mitophagy. EMBO Reports, 2014, 15, 5-6.	4.5	10
40	The Parkinson's disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature Neuroscience, 2013, 16, 1257-1265.	14.8	292
41	TRAP1 rescues PINK1 loss-of-function phenotypes. Human Molecular Genetics, 2013, 22, 2829-2841.	2.9	81
42	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
43	Modeling Pathogenic Mutations of Human Twinkle in Drosophila Suggests an Apoptosis Role in Response to Mitochondrial Defects. PLoS ONE, 2012, 7, e43954.	2.5	18
44	Drosophila Models of Parkinson's Disease. Advances in Genetics, 2011, 73, 1-50.	1.8	80
45	Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biology, 2011, 1, 110012.	3.6	88
46	Molecular Mechanisms of PINK1-Related Neurodegeneration. Current Neurology and Neuroscience Reports, 2011, 11, 283-290.	4.2	23
47	PINK1 cleavage at position A103 by the mitochondrial protease PARL. Human Molecular Genetics, 2011, 20, 867-879.	2.9	385
48	Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Experimental Cell Research, 2010, 316, 1213-1224.	2.6	57
49	<i>Drosophila</i> Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5018-5023.	7.1	682
50	How could Parkin-mediated ubiquitination of mitofusin promote mitophagy?. Autophagy, 2010, 6, 660-662.	9.1	55
51	Translating translation: Regulated protein translation as a biomedical intervention. Fly, 2009, 3, 278-280.	1.7	3
52	The PINK1/Parkin pathway: a mitochondrial quality control system?. Journal of Bioenergetics and Biomembranes, 2009, 41, 499-503.	2.3	118
53	Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death and Differentiation, 2009, 16, 1118-1125.	11.2	77
54	Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neuroscience, 2009, 12, 1129-1135.	14.8	288

#	Article	IF	CITATIONS
55	The PINK1/Parkin pathway regulates mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1638-1643.	7.1	783
56	Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. DMM Disease Models and Mechanisms, 2008, 1, 168-174.	2.4	174
57	Drosophila models pioneer a new approach to drug discovery for Parkinson's disease. Drug Discovery Today, 2006, 11, 119-126.	6.4	95
58	Drosophila DJ-1 Mutants Are Selectively Sensitive to Environmental Toxins Associated with Parkinsonâ \in TM s Disease. Current Biology, 2005, 15, 1572-1577.	3.9	332
59	Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Human Molecular Genetics, 2005, 14, 799-811.	2.9	178
60	Increased glutathione <i>S</i> -transferase activity rescues dopaminergic neuron loss in a <i>Drosophila</i> model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8024-8029.	7.1	374
61	A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage. Gene, 2005, 347, 35-41.	2.2	23
62	Drosophila Models of Parkinson Disease., 2005,, 173-182.		1
63	Temporally dynamic response to Wingless directs the sequential elaboration of the proximodistal axis of the Drosophila wing. Developmental Biology, 2003, 254, 277-288.	2.0	39
64	Mitochondrial pathology and apoptotic muscle degeneration in <i>Drosophila parkin</i> mutants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4078-4083.	7.1	1,117