Elizabeth A Veal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogen Peroxide Sensing and Signaling. Molecular Cell, 2007, 26, 1-14.	9.7	1,374
2	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
3	A 2-Cys Peroxiredoxin Regulates Peroxide-Induced Oxidation and Activation of a Stress-Activated MAP Kinase. Molecular Cell, 2004, 15, 129-139.	9.7	196
4	Inactivation of a Peroxiredoxin by Hydrogen Peroxide Is Critical for Thioredoxin-Mediated Repair of Oxidized Proteins and Cell Survival. Molecular Cell, 2012, 45, 398-408.	9.7	181
5	Hydrogen Peroxide as a Signaling Molecule. Antioxidants and Redox Signaling, 2011, 15, 147-151.	5.4	180
6	Oxidation of a Eukaryotic 2-Cys Peroxiredoxin Is a Molecular Switch Controlling the Transcriptional Response to Increasing Levels of Hydrogen Peroxide. Journal of Biological Chemistry, 2005, 280, 23319-23327.	3.4	141
7	Distinct Roles for Glutathione S-Transferases in the Oxidative Stress Response in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2002, 277, 35523-35531.	3.4	139
8	A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19839-19844.	7.1	135
9	Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nature Communications, 2018, 9, 256.	12.8	132
10	Ybp1 Is Required for the Hydrogen Peroxide-induced Oxidation of the Yap1 Transcription Factor. Journal of Biological Chemistry, 2003, 278, 30896-30904.	3.4	122
11	Caenorhabditis elegans as a model for understanding ROS function in physiology and disease. Redox Biology, 2017, 11, 708-714.	9.0	80
12	<scp>NHR</scp> â€49/ <scp>HNF</scp> 4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell, 2018, 17, e12743.	6.7	75
13	Ybp1 and Gpx3 Signaling in <i>Candida albicans</i> Govern Hydrogen Peroxide-Induced Oxidation of the Cap1 Transcription Factor and Macrophage Escape. Antioxidants and Redox Signaling, 2013, 19, 2244-2260.	5.4	65
14	Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Science Signaling, 2020, 13, .	3.6	65
15	A Peroxiredoxin Promotes H2O2 Signaling and Oxidative Stress Resistance by Oxidizing a Thioredoxin Family Protein. Cell Reports, 2013, 5, 1425-1435.	6.4	59
16	Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction. Molecules and Cells, 2016, 39, 40-45.	2.6	59
17	Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?. Antioxidants and Redox Signaling, 2018, 28, 574-590.	5.4	57
18	A peroxiredoxin, <scp>PRDX</scp> â€2, is required for insulin secretion and insulin/ <scp>IIS</scp> â€dependent regulation of stress resistance and longevity. Aging Cell, 2015, 14, 558-568.	6.7	48

ELIZABETH A VEAL

#	Article	IF	CITATIONS
19	Pho4 mediates phosphate acquisition in <i>Candida albicans</i> and is vital for stress resistance and metal homeostasis. Molecular Biology of the Cell, 2016, 27, 2784-2801.	2.1	46
20	Hydrogen Peroxide-sensitive Cysteines in the Sty1 MAPK Regulate the Transcriptional Response to Oxidative Stress. Journal of Biological Chemistry, 2010, 285, 7505-7516.	3.4	40
21	Functions of Typical 2-Cys Peroxiredoxins in Yeast. Sub-Cellular Biochemistry, 2007, 44, 253-265.	2.4	23
22	Genome-wide screening identifies new genes required for stress-induced phase 2 detoxification gene expression in animals. BMC Biology, 2014, 12, 64.	3.8	22
23	Functional characterization of thioredoxin 3 (TRX-3), a Caenorhabditis elegans intestine-specific thioredoxin. Free Radical Biology and Medicine, 2014, 68, 205-219.	2.9	19
24	The fission yeast <i>Schizosaccharomyces pombe</i> as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide. Biochemical Society Transactions, 2014, 42, 909-916.	3.4	17
25	Role/s of â€~Antioxidant' Enzymes in Ageing. Sub-Cellular Biochemistry, 2018, 90, 425-450.	2.4	16
26	Translating a Low-Sugar Diet into a Longer Life by Maintaining Thioredoxin Peroxidase Activity of a Peroxiredoxin. Molecular Cell, 2011, 43, 699-701.	9.7	2