List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946689/publications.pdf Version: 2024-02-01

HEIKE MÃ1/NZREDC

#	Article	IF	CITATIONS
1	Regulation of body weight: Lessons learned from bariatric surgery. Molecular Metabolism, 2023, 68, 101517.	6.5	17
2	Organization of sympathetic innervation of interscapular brown adipose tissue in the mouse. Journal of Comparative Neurology, 2022, 530, 1363-1378.	1.6	12
3	Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behavioural Brain Research, 2022, 423, 113773.	2.2	4
4	Galanin Regulates Myocardial Mitochondrial ROS Homeostasis and Hypertrophic Remodeling Through GalR2. Frontiers in Pharmacology, 2022, 13, 869179.	3.5	5
5	Sympathetic innervation of inguinal white adipose tissue in the mouse. Journal of Comparative Neurology, 2021, 529, 1465-1485.	1.6	30
6	IGFBP-2 partly mediates the early metabolic improvements caused by bariatric surgery. Cell Reports Medicine, 2021, 2, 100248.	6.5	18
7	Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige?. Physiology, 2021, 36, 246-255.	3.1	12
8	Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R328-R337.	1.8	12
9	Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients, 2021, 13, 4103.	4.1	11
10	The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed?. Physiology and Behavior, 2020, 222, 112959.	2.1	31
11	FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology, 2020, 161, .	2.8	57
12	Recent advances in understanding the role of leptin in energy homeostasis. F1000Research, 2020, 9, 451.	1.6	24
13	Gastric bypass surgery in lean adolescent mice prevents diet-induced obesity later in life. Scientific Reports, 2019, 9, 7881.	3.3	4
14	Sympathetic innervation of the interscapular brown adipose tissue in mouse. Annals of the New York Academy of Sciences, 2019, 1454, 3-13.	3.8	44
15	New Insights into the Regulation of Leptin Gene Expression. Cell Metabolism, 2019, 29, 1013-1014.	16.2	12
16	Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice. Molecular Metabolism, 2019, 25, 64-72.	6.5	31
17	The PYY/Y2R-Deficient Mouse Responds Normally to High-Fat Diet and Gastric Bypass Surgery. Nutrients, 2019, 11, 585.	4.1	35
18	Genetics-based manipulation of adipose tissue sympathetic innervation. Physiology and Behavior, 2018, 190, 21-27.	2.1	14

#	Article	IF	CITATIONS
19	The Hypothalamic Preoptic Area and Body Weight Control. Neuroendocrinology, 2018, 106, 187-194.	2.5	38
20	Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology, 2018, 159, 3631-3642.	2.8	28
21	Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nature Communications, 2018, 9, 4129.	12.8	176
22	Roux-en-Y Gastric Bypass Surgery-Induced Weight Loss and Metabolic Improvements Are Similar in TGR5-Deficient and Wildtype Mice. Obesity Surgery, 2018, 28, 3227-3236.	2.1	30
23	Androgen excess in pancreatic \hat{l}^2 cells and neurons predisposes female mice to type 2 diabetes. JCI Insight, 2018, 3, .	5.0	49
24	Preoptic leptin signaling modulates energy balance independent of body temperature regulation. ELife, 2018, 7, .	6.0	28
25	Testing Effects of Chronic Chemogenetic Neuronal Stimulation on Energy Balance by Indirect Calorimetry. Bio-protocol, 2018, 8, .	0.4	3
26	Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology, 2017, 152, 1728-1738.	1.3	263
27	RYGB Produces more Sustained Body Weight Loss and Improvement of Glycemic Control Compared with VSG in the Diet-Induced Obese Mouse Model. Obesity Surgery, 2017, 27, 2424-2433.	2.1	39
28	Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion. Journal of Neuroscience, 2017, 37, 6053-6065.	3.6	80
29	Hedonics Act in Unison with the Homeostatic System to Unconsciously Control Body Weight. Frontiers in Nutrition, 2016, 3, 6.	3.7	25
30	Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis. Journal of Neuroscience, 2016, 36, 5034-5046.	3.6	108
31	Leptin and Insulin Act on POMC Neurons to Promote the Browning of White Fat. Cell, 2015, 160, 88-104.	28.9	308
32	Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Molecular Metabolism, 2015, 4, 706-717.	6.5	63
33	Neural Control of Energy Expenditure. Handbook of Experimental Pharmacology, 2015, 233, 173-194.	1.8	36
34	Structure, production and signaling of leptin. Metabolism: Clinical and Experimental, 2015, 64, 13-23.	3.4	307
35	Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Molecular Metabolism, 2014, 3, 681-693.	6.5	165
36	Central mechanisms of adiposity in adult female mice with androgen excess. Obesity, 2014, 22, 1477-1484.	3.0	51

#	Article	IF	CITATIONS
37	GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R352-R362.	1.8	157
38	FGF21 is an endocrine signal of protein restriction. Journal of Clinical Investigation, 2014, 124, 3913-3922.	8.2	451
39	Glutamate release mediates leptin action on energy expenditure. Molecular Metabolism, 2013, 2, 109-115.	6.5	30
40	Novel Aspects of Brown Adipose Tissue Biology. Endocrinology and Metabolism Clinics of North America, 2013, 42, 89-107.	3.2	35
41	Integration of sensory information via central thermoregulatory leptin targets. Physiology and Behavior, 2013, 121, 49-55.	2.1	45
42	Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E999-E1011.	3.5	82
43	Neural and metabolic regulation of macronutrient intake and selection. Proceedings of the Nutrition Society, 2012, 71, 390-400.	1.0	71
44	The lateral hypothalamus as integrator of metabolic and environmental needs: From electrical self-stimulation to opto-genetics. Physiology and Behavior, 2011, 104, 29-39.	2.1	201
45	Leptin-Receptor-Expressing Neurons in the Dorsomedial Hypothalamus and Median Preoptic Area Regulate Sympathetic Brown Adipose Tissue Circuits. Journal of Neuroscience, 2011, 31, 1873-1884.	3.6	217
46	Early-Life Exposure to Testosterone Programs the Hypothalamic Melanocortin System. Endocrinology, 2011, 152, 1661-1669.	2.8	104
47	Ventral Tegmental Area Leptin Receptor Neurons Specifically Project to and Regulate Cocaine- and Amphetamine-Regulated Transcript Neurons of the Extended Central Amygdala. Journal of Neuroscience, 2010, 30, 5713-5723.	3.6	117
48	Direct Innervation of GnRH Neurons by Metabolic- and Sexual Odorant-Sensing Leptin Receptor Neurons in the Hypothalamic Ventral Premammillary Nucleus. Journal of Neuroscience, 2009, 29, 3138-3147.	3.6	136
49	The Geometry of Leptin Action in the Brain: More Complicated Than a Simple ARC. Cell Metabolism, 2009, 9, 117-123.	16.2	255
50	Leptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding. Cell Metabolism, 2009, 10, 89-98.	16.2	370
51	Mechanisms of Leptin Action and Leptin Resistance. Annual Review of Physiology, 2008, 70, 537-556.	13.1	880
52	Differential Accessibility of Circulating Leptin to Individual Hypothalamic Sites. Endocrinology, 2007, 148, 5414-5423.	2.8	167
53	Appropriate Inhibition of Orexigenic Hypothalamic Arcuate Nucleus Neurons Independently of Leptin Receptor/STAT3 Signaling. Journal of Neuroscience, 2007, 27, 69-74.	3.6	70
54	Enhanced Leptin-Stimulated Pi3k Activation in the CNS Promotes White Adipose Tissue Transdifferentiation. Cell Metabolism, 2007, 6, 431-445.	16.2	121

#	Article	IF	CITATIONS
55	Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. Journal of Clinical Investigation, 2007, 117, 1354-1360.	8.2	152
56	Leptin Receptor Signaling and Action in the Central Nervous System. Obesity, 2006, 14, 208S-212S.	3.0	175
57	Role of Signal Transducer and Activator of Transcription 3 in Regulation of Hypothalamic trh Gene Expression by Leptin. Endocrinology, 2004, 145, 2516-2523.	2.8	67
58	Region-Specific Leptin Resistance within the Hypothalamus of Diet-Induced Obese Mice. Endocrinology, 2004, 145, 4880-4889.	2.8	628
59	Role of Signal Transducer and Activator of Transcription 3 in Regulation of Hypothalamic Proopiomelanocortin Gene Expression by Leptin. Endocrinology, 2003, 144, 2121-2131.	2.8	278