
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. ELife, 2022, 11, .	6.0	17
2	Freeze-drying can replace cold-chains for transport and storage of fecal microbiome samples. PeerJ, 2022, 10, e13095.	2.0	3
3	Biological Earth observation with animal sensors. Trends in Ecology and Evolution, 2022, 37, 293-298.	8.7	49
4	Hotspots in the grid: Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa. Journal of Applied Ecology, 2022, 59, 1496-1512.	4.0	20
5	Detection of <i>Neoehrlichia mikurensis</i> DNA in blood donors in southeastern Sweden. Infectious Diseases, 2022, 54, 748-759.	2.8	2
6	Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Scientific Reports, 2022, 12, .	3.3	106
7	Host Range of Influenza A Virus H1 to H16 in Eurasian Ducks Based on Tissue and Receptor Binding Studies. Journal of Virology, 2021, 95, .	3.4	23
8	Three Babesia species in Ixodes ricinus ticks from migratory birds in Sweden. Parasites and Vectors, 2021, 14, 183.	2.5	8
9	Evidence for continental-scale dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. Science of the Total Environment, 2021, 764, 144551.	8.0	30
10	A Bayesian semiparametric Jolly–Seber model with individual heterogeneity: An application to migratory mallards at stopover. Annals of Applied Statistics, 2021, 15, .	1.1	1
11	Migration distance affects how closely Eurasian wigeons follow spring phenology during migration. Movement Ecology, 2021, 9, 61.	2.8	5
12	Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: a seasonal study at Ottenby Bird Observatory in South-eastern Sweden. Parasites and Vectors, 2020, 13, 607.	2.5	38
13	A Comparative Study of the Innate Humoral Immune Response to Avian Influenza Virus in Wild and Domestic Mallards. Frontiers in Microbiology, 2020, 11, 608274.	3.5	7
14	Attachment Patterns of Human and Avian Influenza Viruses to Trachea and Colon of 26 Bird Species – Support for the Community Concept. Frontiers in Microbiology, 2019, 10, 815.	3.5	12
15	A Comprehensive Model for the Quantitative Estimation of Seed Dispersal by Migratory Mallards. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	28
16	A rapid and transient innate immune response to avian influenza infection in mallards. Molecular Immunology, 2018, 95, 64-72.	2.2	15
17	Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania. Parasites and Vectors, 2018, 11, 144.	2.5	16
18	Host and virus ecology as determinants of influenza A virus transmission in wild birds. Current Opinion in Virology, 2018, 28, 26-36.	5.4	58

#	Article	IF	CITATIONS
19	As the Duck Flies—Estimating the Dispersal of Low-Pathogenic Avian Influenza Viruses by Migrating Mallards. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	22
20	Characterization of Campylobacter spp. isolated from wild birds in the Antarctic and Sub-Antarctic. PLoS ONE, 2018, 13, e0206502.	2.5	6
21	Where do all the subtypes go? Temporal dynamics of H8–H12 influenza A viruses in waterfowl. Virus Evolution, 2018, 4, vey025.	4.9	23
22	Molecular identification of papillomavirus in ducks. Scientific Reports, 2018, 8, 9096.	3.3	7
23	The Potential of Isolation Source to Predict Colonization in Avian Hosts: A Case Study in Campylobacter jejuni Strains From Three Bird Species. Frontiers in Microbiology, 2018, 9, 591.	3.5	18
24	Characterization of avian influenza virus attachment patterns to human and pig tissues. Scientific Reports, 2018, 8, 12215.	3.3	20
25	Expression of immune genes RIG-I and Mx in mallard ducks infected with low pathogenic avian influenza (LPAI): A dataset. Data in Brief, 2018, 18, 1562-1566.	1.0	3
26	No evidence for homosubtypic immunity of influenza H3 in Mallards following vaccination in a natural experimental system. Molecular Ecology, 2017, 26, 1420-1431.	3.9	10
27	Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective. Infection Ecology and Epidemiology, 2017, 7, 1300450.	0.8	54
28	Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. Advances in Environmental Microbiology, 2017, , 247-286.	0.3	4
29	Co-infection with Babesia divergens and Anaplasma phagocytophilum in cattle (Bos taurus), Sweden. Ticks and Tick-borne Diseases, 2017, 8, 933-935.	2.7	34
30	Narrative overview on wild bird migration in the context of highly pathogenic avian influenza incursion into the European Union. EFSA Supporting Publications, 2017, 14, 1283E.	0.7	4
31	Babesia, Theileria, and Hepatozoon species in ticks infesting animal hosts in Romania. Parasitology Research, 2017, 116, 2291-2297.	1.6	27
32	Canine tick-borne diseases in pet dogs from Romania. Parasites and Vectors, 2017, 10, 155.	2.5	27
33	A Panel of Stably Expressed Reference Genes for Real-Time qPCR Gene Expression Studies of Mallards (Anas platyrhynchos). PLoS ONE, 2016, 11, e0149454.	2.5	26
34	The Evolution of Innate Immune Genes: Purifying and Balancing Selection on β-Defensins in Waterfowl. Molecular Biology and Evolution, 2016, 33, 3075-3087.	8.9	38
35	Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?. Royal Society Open Science, 2016, 3, 150633.	2.4	33
36	Assessing the Role of Seabirds in the Ecology of Influenza A Viruses. Avian Diseases, 2016, 60, 378.	1.0	34

#	Article	IF	CITATIONS
37	Capturing individualâ€level parameters of influenza A virus dynamics in wild ducks using multistate models. Journal of Applied Ecology, 2016, 53, 1289-1297.	4.0	16
38	How Does Sampling Methodology Influence Molecular Detection and Isolation Success in Influenza A Virus Field Studies?. Applied and Environmental Microbiology, 2016, 82, 1147-1153.	3.1	13
39	Age and sex determination of Mallards Anas platyrhynchos in autumn. Ornis Svecica, 2016, 26, 61-81.	0.1	2
40	Wild birdâ€associated <scp><i>C</i></scp> <i>ampylobacter jejuni</i> isolates are a consistent source of human disease, in <scp>O</scp> xfordshire, <scp>U</scp> nited <scp>K</scp> ingdom. Environmental Microbiology Reports, 2015, 7, 782-788.	2.4	61
41	Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe. Acta Veterinaria Scandinavica, 2015, 57, 74.	1.6	87
42	Campylobacter jejuni sequence types show remarkable spatial and temporal stability in Blackbirds. Infection Ecology and Epidemiology, 2015, 5, 28383.	0.8	7
43	Intestinal spirochaetes (genus <i>Brachyspira</i>) colonise wild birds in the southern Atlantic region and Antarctica. Infection Ecology and Epidemiology, 2015, 5, 29296.	0.8	5
44	Candidatus Neoehrlichia mikurensis in Ticks from Migrating Birds in Sweden. PLoS ONE, 2015, 10, e0133250.	2.5	27
45	Comparison of Extended-Spectrum β-Lactamase (ESBL) CTX-M Genotypes in Franklin Gulls from Canada and Chile. PLoS ONE, 2015, 10, e0141315.	2.5	45
46	Oseltamivir-Resistant Influenza A (H1N1) Virus Strain with an H274Y Mutation in Neuraminidase Persists without Drug Pressure in Infected Mallards. Applied and Environmental Microbiology, 2015, 81, 2378-2383.	3.1	23
47	Influenza A(H7N9) Virus Acquires Resistance-Related Neuraminidase I222T Substitution When Infected Mallards Are Exposed to Low Levels of Oseltamivir in Water. Antimicrobial Agents and Chemotherapy, 2015, 59, 5196-5202.	3.2	20
48	Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data. Journal of General Virology, 2015, 96, 2050-2060.	2.9	23
49	Genetic diversity and host associations in Campylobacter jejuni from human cases and broilers in 2000 and 2008. Veterinary Microbiology, 2015, 178, 94-98.	1.9	23
50	Temporal dynamics, diversity, and interplay in three components of the virodiversity of a Mallard population: Influenza A virus, avian paramyxovirus and avian coronavirus. Infection, Genetics and Evolution, 2015, 29, 129-137.	2.3	34
51	With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS ONE, 2015, 10, e0141853.	2.5	236
52	Movements, Home-Range Size and Habitat Selection of Mallards during Autumn Migration. PLoS ONE, 2014, 9, e100764.	2.5	52
53	Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140098.	2.6	103
54	On the potential roles of ticks and migrating birds in the ecology of West Nile virus. Infection Ecology and Epidemiology, 2014, 4, 20943.	0.8	9

#	Article	IF	CITATIONS
55	Antibiotic resistance patterns in <i>Escherichia coli</i> from gulls in nine European countries. Infection Ecology and Epidemiology, 2014, 4, 21565.	0.8	42
56	Infected or not: are PCR-positive oropharyngeal swabs indicative of low pathogenic influenza A virus infection in the respiratory tract of Mallard Anas platyrhynchos?. Veterinary Research, 2014, 45, 53.	3.0	14
57	Extended-Spectrum β-Lactamases in <i>Escherichia coli and Klebsiellapneumoniae</i> in Gulls, Alaska, USA. Emerging Infectious Diseases, 2014, 20, 897-9.	4.3	57
58	Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. Movement Ecology, 2013, 1, 4.	2.8	111
59	Prevalence of avian paramyxovirus type 1 in Mallards during autumn migration in the western Baltic Sea region. Virology Journal, 2013, 10, 285.	3.4	19
60	Multilocus Sequence Typing and FlaA Sequencing Reveal the Genetic Stability of Campylobacter jejuni Enrichment during Coculture with Acanthamoeba polyphaga. Applied and Environmental Microbiology, 2013, 79, 2477-2479.	3.1	4
61	Marked host specificity and lack of phylogeographic population structure of <i>Campylobacter jejuni</i> in wild birds. Molecular Ecology, 2013, 22, 1463-1472.	3.9	96
62	Circannual variation in blood parasitism in a subâ€ S aharan migrant passerine bird, the garden warbler. Journal of Evolutionary Biology, 2013, 26, 1047-1059.	1.7	36
63	Frequency and patterns of reassortment in natural influenza A virus infection in a reservoir host. Virology, 2013, 443, 150-160.	2.4	54
64	Heterosubtypic Immunity to Influenza A Virus Infections in Mallards May Explain Existence of Multiple Virus Subtypes. PLoS Pathogens, 2013, 9, e1003443.	4.7	70
65	Resistance Mutation R292K Is Induced in Influenza A(H6N2) Virus by Exposure of Infected Mallards to Low Levels of Oseltamivir. PLoS ONE, 2013, 8, e71230.	2.5	22
66	Flexibility of Continental Navigation and Migration in European Mallards. PLoS ONE, 2013, 8, e72629.	2.5	24
67	Individual Variation in Influenza A Virus Infection Histories and Long-Term Immune Responses in Mallards. PLoS ONE, 2013, 8, e61201.	2.5	62
68	How to track a flu virus. Nature, 2012, 483, 535-536.	27.8	10
69	Human-Associated Extended-Spectrum β-Lactamase in the Antarctic. Applied and Environmental Microbiology, 2012, 78, 2056-2058.	3.1	57
70	Chlamydia psittaciin birds of prey, Sweden. Infection Ecology and Epidemiology, 2012, 2, 8435.	0.8	13
71	Chlamydia psittaci in Swedish Wetland Birds: A Risk to Zoonotic Infection?. Avian Diseases, 2012, 56, 737-740.	1.0	16
72	Direct and indirect effects of winter harshness on the survival of Mallards <i>Anas platyrhynchos</i> in northwest Europe. Ibis, 2012, 154, 307-317.	1.9	35

#	Article	IF	CITATIONS
73	Transient Expression of Hemagglutinin Antigen from Low Pathogenic Avian Influenza A (H7N7) in Nicotiana benthamiana. PLoS ONE, 2012, 7, e33010.	2.5	41
74	Antimicrobial Drug–Resistant <i>Escherichia coli</i> in Wild Birds and Free-range Poultry, Bangladesh. Emerging Infectious Diseases, 2012, 18, 2055-2058.	4.3	75
75	A novelSalmonellaserovar isolated from Peregrine Falcon (Falco peregrinus) nestlings in Sweden:Salmonella enterica entericaserovar Pajala (SalmonellaPajala). Infection Ecology and Epidemiology, 2012, 2, 7373.	0.8	4
76	Migratory Birds, Ticks, and Crimean-Congo Hemorrhagic Fever Virus. Emerging Infectious Diseases, 2012, 18, 2095-2097.	4.3	83
77	The Ecology of Emerging Infectious Diseases in Migratory Birds: An Assessment of the Role of Climate Change and Priorities for Future Research. EcoHealth, 2012, 9, 80-88.	2.0	104
78	Disease Dynamics and Bird Migration—Linking Mallards Anas platyrhynchos and Subtype Diversity of the Influenza A Virus in Time and Space. PLoS ONE, 2012, 7, e35679.	2.5	53
79	Birds and Viruses at a Crossroad - Surveillance of Influenza A Virus in Portuguese Waterfowl. PLoS ONE, 2012, 7, e49002.	2.5	12
80	Non-breeding ecology of the Whinchat Saxicola rubetra in Nigeria. Ornis Svecica, 2012, 22, 25-32.	0.1	8
81	High Prevalence of Antibiotic Resistance in Pathogenic Escherichia coli from Large- and Small-Scale Poultry Farms in Bangladesh. Avian Diseases, 2011, 55, 689-692.	1.0	54
82	Antibiotic Resistance Patterns in Fecal Bacteria Isolated from Christmas Shearwater (Puffinus) Tj ETQq0 0 0 rg 486-489.	BT /Overlocl 1.0	2 10 Tf 50 38 13
83	Forecasting risk of tick-borne encephalitis (TBE): Using data from wildlife and climate to predict next year's number of human victims. Scandinavian Journal of Infectious Diseases, 2011, 43, 366-372.	1.5	19
84	Surveillance for West Nile Virus in Wild Birds from Northern Europe. Vector-Borne and Zoonotic Diseases, 2011, 11, 77-79.	1.5	23
85	Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards. PLoS ONE, 2011, 6, e24742.	2.5	54
86	Avian Influenza Surveillance with FTA Cards: Field Methods, Biosafety, and Transportation Issues Solved. Journal of Visualized Experiments, 2011, , .	0.3	28
87	Trends in Body Mass of Ducks over Time: The Hypotheses in Guillemain et al. Revisited. Ambio, 2011, 40, 338-340.	5.5	10
88	Prevalence of Campylobacter in Wild Birds of the Mid-Atlantic Region, USA. Journal of Wildlife Diseases, 2011, 47, 750-754.	0.8	51
89	The Pattern of Influenza Virus Attachment Varies among Wild Bird Species. PLoS ONE, 2011, 6, e24155.	2.5	29
90	Population fluctuations and timing of spring migration of the Scandinavian Bluethroat Luscinia svecica svecica at Ottenby Bird Observatory, Sweden, 1955–2008. Ornis Svecica, 2011, 21, 92-100.	0.1	2

#	Article	IF	CITATIONS
91	The stopover behaviour of the Garden Warbler Sylvia borin in Obudu, southeast Nigeria. Ornis Svecica, 2011, 21, 29-36.	0.1	3
92	Amoebae and algae can prolong the survival of Campylobacter species in co-culture. Experimental Parasitology, 2010, 126, 59-64.	1.2	27
93	Multilocus sequence typing of Campylobacter jejuni from broilers. Veterinary Microbiology, 2010, 140, 180-185.	1.9	38
94	Dissemination of Spotted Fever Rickettsia Agents in Europe by Migrating Birds. PLoS ONE, 2010, 5, e8572.	2.5	120
95	Influenza Virus in a Natural Host, the Mallard: Experimental Infection Data. PLoS ONE, 2010, 5, e8935.	2.5	130
96	Prevalence and Phylogeny of Coronaviruses in Wild Birds from the Bering Strait Area (Beringia). PLoS ONE, 2010, 5, e13640.	2.5	61
97	Zero Prevalence of Influenza A Virus in Two Raptor Species by Standard Screening. Vector-Borne and Zoonotic Diseases, 2010, 10, 387-390.	1.5	8
98	Increase in Acid Tolerance of <i>Campylobacter jejuni</i> through Coincubation with Amoebae. Applied and Environmental Microbiology, 2010, 76, 4194-4200.	3.1	26
99	A novel <i>Chlamydiaceae</i> â€like bacterium found in faecal specimens from sea birds from the Bering Sea. Environmental Microbiology Reports, 2010, 2, 605-610.	2.4	17
100	Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment. PLoS ONE, 2010, 5, e9082.	2.5	52
101	Dissemination of Escherichia coli with CTX-M Type ESBL between Humans and Yellow-Legged Gulls in the South of France. PLoS ONE, 2009, 4, e5958.	2.5	190
102	<i>Campylobacter jejuni</i> in Penguins, Antarctica. Emerging Infectious Diseases, 2009, 15, 847-849.	4.3	20
103	Effects of influenza A virus infection on migrating mallard ducks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1029-1036.	2.6	174
104	Does influenza A affect body condition of wild mallard ducks, or <i>vice versa</i> ? A reply to Flint and Franson. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2347-2349.	2.6	19
105	A simple method for long-term storage of Acanthamoeba species. Parasitology Research, 2009, 104, 935-937.	1.6	15
106	The "human influenza receptor―Neu5Acα2,6Gal is expressed among different taxa of wild birds. Archives of Virology, 2009, 154, 1533-1537.	2.1	18
107	Antibiotic susceptibility of faecal bacteria in Antarctic penguins. Polar Biology, 2008, 31, 759-763.	1.2	27
108	lsotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host. Oecologia, 2008, 158, 299-306.	2.0	36

#	Article	IF	CITATIONS
109	Gene Segment Reassortment Between American and Asian Lineages of Avian Influenza Virus from Waterfowl in the Beringia Area. Vector-Borne and Zoonotic Diseases, 2008, 8, 783-790.	1.5	54
110	Red fox and tick-borne encephalitis (TBE) in humans: Can predators influence public health?. Scandinavian Journal of Infectious Diseases, 2008, 40, 527-532.	1.5	20
111	Phylogenetic analysis of the non-structural (NS) gene of influenza A viruses isolated from mallards in Northern Europe in 2005. Virology Journal, 2008, 5, 147.	3.4	29
112	Haemosporidian Blood Parasites in European Birds of Prey and Owls. Journal of Parasitology, 2008, 94, 709-715.	0.7	74
113	Sampling for low-pathogenic avian influenza A virus in wild Mallard ducks: Oropharyngeal versus cloacal swabbing. Vaccine, 2008, 26, 4414-4416.	3.8	62
114	Roadside ecology and epidemiology of tick-borne diseases. Scandinavian Journal of Infectious Diseases, 2008, 40, 853-858.	1.5	9
115	Barn Swallows (Hirundo rustica) Test Negative for Salmonella. Vector-Borne and Zoonotic Diseases, 2008, 8, 451-454.	1.5	6
116	Haemosporidian Blood Parasites in European Birds of Prey and Owls. Journal of Parasitology, 2008, 94, 709.	0.7	10
117	<i>Acanthamoeba</i> - <i>Campylobacter</i> Coculture as a Novel Method for Enrichment of <i>Campylobacter</i> Species. Applied and Environmental Microbiology, 2007, 73, 6864-6869.	3.1	26
118	Spatial, Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory Birds. PLoS Pathogens, 2007, 3, e61.	4.7	591
119	Response to Comment on "Rapid Advance of Spring Arrival Dates in Long-Distance Migratory Birds". Science, 2007, 315, 598c-598c.	12.6	24
120	Migrating Birds and Tickborne Encephalitis Virus. Emerging Infectious Diseases, 2007, 13, 1215-1218.	4.3	151
121	Within-Host Speciation of Malaria Parasites. PLoS ONE, 2007, 2, e235.	2.5	103
122	Surveillance of Influenza Virus A in Migratory Waterfowl in Northern Europe. Emerging Infectious Diseases, 2007, 13, 404-411.	4.3	214
123	Detecting shifts of transmission areas in avian blood parasites - a phylogenetic approach. Molecular Ecology, 2007, 16, 1281-1290.	3.9	183
124	Temporal dynamics and diversity of avian malaria parasites in a single host species. Journal of Animal Ecology, 2007, 76, 112-122.	2.8	218
125	Species diversity of campylobacteria in a wild bird community in Sweden. Journal of Applied Microbiology, 2007, 102, 424-32.	3.1	64
126	Enteropathogenic Escherichia coli (EPEC) in Antarctic fur seals Arctocephalus gazella. Polar Biology, 2007, 30, 1227-1229.	1.2	13

#	Article	IF	CITATIONS
127	Temporal patterns of occurrence and transmission of the blood parasite Haemoproteus payevskyi in the great reed warbler Acrocephalus arundinaceus. Journal of Ornithology, 2007, 148, 401-409.	1.1	48
128	Antiviral Oseltamivir Is not Removed or Degraded in Normal Sewage Water Treatment: Implications for Development of Resistance by Influenza A Virus. PLoS ONE, 2007, 2, e986.	2.5	83
129	Global Patterns of Influenza A Virus in Wild Birds. Science, 2006, 312, 384-388.	12.6	1,619
130	Rapid Advance of Spring Arrival Dates in Long-Distance Migratory Birds. Science, 2006, 312, 1959-1961.	12.6	399
131	Mounting evidence for the presence of influenza A virus in the avifauna of the Antarctic region. Antarctic Science, 2006, 18, 353-356.	0.9	36
132	The timing of spring migration in trans-Saharan migrants: a comparison between Ottenby, Sweden and Capri, Italy. Ornis Svecica, 2006, 16, 27-33.	0.1	6
133	Garden Warbler Sylvia borin migration in sub-Saharan West Africa: phenology and body mass changes. Ibis, 2005, 147, 750-757.	1.9	48
134	What are malaria parasites?. Trends in Parasitology, 2005, 21, 209-211.	3.3	74
135	Differentiation and phylogeny of the olivaceous warbler Hippolais pallida species complex. Journal Fur Ornithologie, 2005, 146, 127-136.	1.2	11
136	Associations between malaria and MHC genes in a migratory songbird. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1511-1518.	2.6	172
137	Protozoan Acanthamoeba polyphaga as a Potential Reservoir for Campylobacter jejuni. Applied and Environmental Microbiology, 2005, 71, 987-992.	3.1	123
138	Antimicrobial Resistance Profiles of Campylobacter jejuni Isolates from Wild Birds in Sweden. Applied and Environmental Microbiology, 2005, 71, 2438-2441.	3.1	30
139	In Search of Human-associated Bacterial Pathogens in Antarctic Wildlife: Report from Six Penguin Colonies Regularly Visited by Tourists. Ambio, 2005, 34, 430-432.	5.5	34
140	Migration patterns, population trends and morphometrics of Ruddy Turnstones Arenaria interpres passing through Ottenby in south-eastern Sweden. Ornis Svecica, 2005, 15, 63-72.	0.1	7
141	In search of human-associated bacterial pathogens in Antarctic wildlife: report from six penguin colonies regularly visited by tourists. Ambio, 2005, 34, 430-2.	5.5	13
142	Salmonella Amager, Campylobacter jejuni, and Urease-positive Thermophilic Campylobacter Found in Free-flying Peregrine Falcons (Falco peregrinus) in Sweden. Journal of Wildlife Diseases, 2004, 40, 583-587.	0.8	16
143	Diversities and similarities in PFGE profiles of Campylobacter jejuni isolated from migrating birds and humans. Journal of Applied Microbiology, 2004, 96, 834-843.	3.1	72
144	LINKAGE BETWEEN NUCLEAR AND MITOCHONDRIAL DNA SEQUENCES IN AVIAN MALARIA PARASITES: MULTIPLE CASES OF CRYPTIC SPECIATION?. Evolution; International Journal of Organic Evolution, 2004, 58, 1617-1621.	2.3	271

#	Article	IF	CITATIONS
145	A NEW PCR ASSAY FOR SIMULTANEOUS STUDIES OF LEUCOCYTOZOON, PLASMODIUM, AND HAEMOPROTEUS FROM AVIAN BLOOD. Journal of Parasitology, 2004, 90, 797-802.	0.7	812
146	A New Nested Polymerase Chain Reaction Method Very Efficient in Detecting Plasmodium and Haemoproteus Infections From Avian Blood. Journal of Parasitology, 2004, 90, 191-194.	0.7	418
147	LINKAGE BETWEEN NUCLEAR AND MITOCHONDRIAL DNA SEQUENCES IN AVIAN MALARIA PARASITES: MULTIPLE CASES OF CRYPTIC SPECIATION?. Evolution; International Journal of Organic Evolution, 2004, 58, 1617.	2.3	18
148	Avian Reservoirs and Zoonotic Potential of theEmerging Human Pathogen Helicobactercanadensis. Applied and Environmental Microbiology, 2003, 69, 7523-7526.	3.1	43
149	virF -Positive Yersinia pseudotuberculosis and Yersinia enterocolitica Found in Migratory Birds in Sweden. Applied and Environmental Microbiology, 2003, 69, 4670-4675.	3.1	69
150	<i>Salmonella</i> in Birds Migrating through Sweden. Emerging Infectious Diseases, 2003, 9, 753-755.	4.3	42
151	Campylobacter jejuni in Black-Headed Gulls (Larus ridibundus): Prevalence, Genotypes, and Influence on C. jejuni Epidemiology. Journal of Clinical Microbiology, 2002, 40, 4594-4602.	3.9	104
152	Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in Different Ecological Guilds and Taxa of Migrating Birds. Applied and Environmental Microbiology, 2002, 68, 5911-5917.	3.1	233
153	Moult strategies in the Common Whitethroat Sylvia c. communis in northern Nigeria. Ibis, 2002, 144, E11-E18.	1.9	5
154	Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Molecular Ecology, 2002, 11, 1545-1554.	3.9	348
155	The accuracy of field sex determination in the Common Whitethroat Sylvia c. communis. Ornis Svecica, 2000, 10, 67-70.	0.1	3
156	Recension av â€European Breeding Bird Atlas 2: Distribution, Abundance and Change―(Keller V,) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
157	Recension av â€Ageing and Sexing of Migratory East Asian Passerines―(Norevik G, Hellström M, Liu D &) Tj ET(2q1 1 0.78	84314 rgB⊺
158	Recension av â€Moult and Ageing of European Passerines, 2nd edition―(Jenni L & Winkler R, 2020). Ornis Svecica, 0, 31, .	0.1	0
159	Recension av â€Fugleatlas: de danske ynglefugles udbredelse 2014–2017―(VikstrÃ,m T & MoshÃ,j CM,)	Tj ETQq1 1	1 0,784314 r

160	Ornis Svecica moulting into its new plumage. Ornis Svecica, 0, 30, .	0.1	0
161	On the wing. Ornis Svecica, 0, 32, 1-4.	0.1	0