
Jeffrey C Barrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491, 119-124.	27.8	4,038
2	A Common Variant in the <i>FTO</i> Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 2007, 316, 889-894.	12.6	3,884
3	The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496, 498-503.	27.8	3,708
4	Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genetics, 2008, 40, 955-962.	21.4	2,422
5	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421
6	Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genetics, 2010, 42, 1118-1125.	21.4	2,284
7	Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515, 209-215.	27.8	2,254
8	Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science, 2007, 316, 1336-1341.	12.6	2,040
9	Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 2015, 47, 979-986.	21.4	1,965
10	Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nature Genetics, 2009, 41, 703-707.	21.4	1,513
11	Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genetics, 2007, 39, 1329-1337.	21.4	1,298
12	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	21.4	1,213
13	Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genetics, 2011, 43, 246-252.	21.4	1,201
14	A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes. Science, 2012, 335, 823-828.	12.6	1,095
15	Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nature Genetics, 2007, 39, 830-832.	21.4	1,063
16	The UK10K project identifies rare variants in health and disease. Nature, 2015, 526, 82-90.	27.8	1,014
17	Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature, 2021, 593, 266-269.	27.8	1,001
18	Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nature Genetics, 2017, 49, 256-261.	21.4	943

#	Article	IF	CITATIONS
19	Multiple common variants for celiac disease influencing immune gene expression. Nature Genetics, 2010, 42, 295-302.	21.4	871
20	Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 2010, 464, 713-720.	27.8	737
21	Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nature Genetics, 2011, 43, 1193-1201.	21.4	682
22	Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet, The, 2015, 385, 1305-1314.	13.7	651
23	Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nature Genetics, 2016, 48, 510-518.	21.4	617
24	Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet, The, 2016, 387, 156-167.	13.7	607
25	Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nature Genetics, 2015, 47, 381-386.	21.4	589
26	Phosphoinositide 3-Kinase δGene Mutation Predisposes to Respiratory Infection and Airway Damage. Science, 2013, 342, 866-871.	12.6	541
27	Pervasive Sharing of Genetic Effects in Autoimmune Disease. PLoS Genetics, 2011, 7, e1002254.	3.5	540
28	Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature, 2017, 547, 173-178.	27.8	473
29	Common variants at five new loci associated with early-onset inflammatory bowel disease. Nature Genetics, 2009, 41, 1335-1340.	21.4	459
30	Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nature Genetics, 2008, 40, 710-712.	21.4	403
31	Evaluating coverage of genome-wide association studies. Nature Genetics, 2006, 38, 659-662.	21.4	389
32	Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nature Neuroscience, 2016, 19, 571-577.	14.8	388
33	Open Targets Platform: new developments and updates two years on. Nucleic Acids Research, 2019, 47, D1056-D1065.	14.5	364
34	Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Research, 2017, 45, D985-D994.	14.5	355
35	Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population. PLoS Genetics, 2014, 10, e1004494.	3.5	351
36	Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nature Genetics, 2016, 48, 1060-1065.	21.4	351

#	Article	IF	CITATIONS
37	Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature, 2020, 586, 757-762.	27.8	343
38	Concept, Design and Implementation of a Cardiovascular Gene-Centric 50 K SNP Array for Large-Scale Genomic Association Studies. PLoS ONE, 2008, 3, e3583.	2.5	339
39	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21.4	312
40	Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Research, 2021, 49, D1311-D1320.	14.5	295
41	Haploview: Visualization and Analysis of SNP Genotype Data. Cold Spring Harbor Protocols, 2009, 2009, pdb.ip71.	0.3	290
42	High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nature Genetics, 2015, 47, 172-179.	21.4	280
43	Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genetics in Medicine, 2018, 20, 1216-1223.	2.4	255
44	Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nature Genetics, 2012, 44, 1137-1141.	21.4	251
45	HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients With Crohn's Disease. Gastroenterology, 2020, 158, 189-199.	1.3	249
46	Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature, 2018, 562, 268-271.	27.8	246
47	De novo mutations in regulatory elements in neurodevelopmental disorders. Nature, 2018, 555, 611-616.	27.8	232
48	An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nature Genetics, 2021, 53, 1527-1533.	21.4	208
49	Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway. Cell, 2013, 155, 57-69.	28.9	200
50	The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics, 2017, 49, 1167-1173.	21.4	200
51	Investigation of Crohn's Disease Risk Loci in Ulcerative Colitis Further Defines Their Molecular Relationship. Gastroenterology, 2009, 136, 523-529.e3.	1.3	198
52	Strategies for fine-mapping complex traits. Human Molecular Genetics, 2015, 24, R111-R119.	2.9	191
53	Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature, 2013, 498, 232-235.	27.8	184
54	Quantifying the contribution of recessive coding variation to developmental disorders. Science, 2018, 362, 1161-1164.	12.6	158

#	Article	IF	CITATIONS
55	Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nature Genetics, 2015, 47, 523-527.	21.4	156
56	Genetic risk prediction in complex disease. Human Molecular Genetics, 2011, 20, R182-R188.	2.9	154
57	Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nature Genetics, 2017, 49, 186-192.	21.4	153
58	Understanding inflammatory bowel disease via immunogenetics. Journal of Autoimmunity, 2015, 64, 91-100.	6.5	144
59	Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nature Genetics, 2015, 47, 1363-1369.	21.4	133
60	HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nature Genetics, 2016, 48, 318-322.	21.4	123
61	Worldwide population differentiation at disease-associated SNPs. BMC Medical Genomics, 2008, 1, 22.	1.5	114
62	Synthetic Associations Are Unlikely to Account for Many Common Disease Genome-Wide Association Signals. PLoS Biology, 2011, 9, e1000580.	5.6	102
63	Confirmation of the role of ATG16l1 as a Crohn's disease susceptibility gene. Inflammatory Bowel Diseases, 2007, 13, 941-946.	1.9	98
64	Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations. PLoS Genetics, 2013, 9, e1003509.	3.5	95
65	Evaluating the Effects of Imputation on the Power, Coverage, and Cost Efficiency of Genome-wide SNP Platforms. American Journal of Human Genetics, 2008, 83, 112-119.	6.2	93
66	Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nature Communications, 2019, 10, 2176.	12.8	83
67	Genomic reconstruction of the SARS-CoV-2 epidemic in England. Nature, 2021, 600, 506-511.	27.8	80
68	Genome Wide Association Study of Fetal Hemoglobin in Sickle Cell Anemia in Tanzania. PLoS ONE, 2014, 9, e111464.	2.5	78
69	The intermediate filament protein, vimentin, is a regulator of NOD2 activity. Gut, 2013, 62, 695-707.	12.1	71
70	How next-generation sequencing is transforming complex disease genetics. Trends in Genetics, 2013, 29, 23-30.	6.7	70
71	Pathogenicity and selective constraint on variation near splice sites. Genome Research, 2019, 29, 159-170.	5.5	70
72	Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population. PLoS Genetics, 2018, 14, e1007329.	3.5	66

5

#	Article	IF	CITATIONS
73	Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes. PLoS Genetics, 2015, 11, e1004955.	3.5	59
74	Genetic Complexity of Crohn's Disease in Two Large Ashkenazi Jewish Families. Gastroenterology, 2016, 151, 698-709.	1.3	54
75	Synthetic associations in the context of genome-wide association scan signals. Human Molecular Genetics, 2010, 19, R137-R144.	2.9	53
76	Marker selection for genetic case–control association studies. Nature Protocols, 2009, 4, 743-752.	12.0	43
77	Imputation of low-frequency variants using the HapMap3 benefits from large, diverse reference sets. European Journal of Human Genetics, 2011, 19, 662-666.	2.8	40
78	COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a prospective observational cohort study. Scientific Reports, 2022, 12, .	3.3	39
79	Evoker: a visualization tool for genotype intensity data. Bioinformatics, 2010, 26, 1786-1787.	4.1	37
80	Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nature Communications, 2020, 11, 995.	12.8	37
81	Using human genetics to make new medicines. Nature Reviews Genetics, 2015, 16, 561-562.	16.3	25
82	Genetic association of fetal-hemoglobin levels in individuals with sickle cell disease in Tanzania maps to conserved regulatory elements within the MYB core enhancer. BMC Medical Genetics, 2015, 16, 4.	2.1	24
83	Multiomics Analyses to Deliver the Most Effective Treatment to Every Patient With Inflammatory Bowel Disease. Gastroenterology, 2018, 155, e1-e4.	1.3	24
84	Returning genome sequences to research participants: Policy and practice. Wellcome Open Research, 2017, 2, 15.	1.8	24
85	Variation at Spike position 142 in SARS-CoV-2 Delta genomes is a technical artifact caused by dropout of a sequencing amplicon. Wellcome Open Research, 0, 6, 305.	1.8	24
86	To what extent do scans of non-synonymous SNPs complement denser genome-wide association studies?. European Journal of Human Genetics, 2008, 16, 718-723.	2.8	23
87	Characterization of Expression Quantitative Trait Loci in the Human Colon. Inflammatory Bowel Diseases, 2015, 21, 251-256.	1.9	22
88	High-throughput and quantitative genome-wide messenger RNA sequencing for molecular phenotyping. BMC Genomics, 2015, 16, 578.	2.8	19
89	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	3.2	17
90	Exome Sequencing and Genotyping Identify a Rare Variant in <i>NLRP7</i> Gene Associated With Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 321-326.	1.3	14

#	Article	IF	CITATIONS
91	Using Genetic Prediction from Known Complex Disease Loci to Guide the Design of Next-Generation Sequencing Experiments. PLoS ONE, 2013, 8, e76328.	2.5	13
92	Olorin: combining gene flow with exome sequencing in large family studies of complex disease. Bioinformatics, 2012, 28, 3320-3321.	4.1	10
93	Misuse of hierarchical linear models overstates the significance of a reported association between <i>OXTR</i> and prosociality. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1048.	7.1	6
94	Complex Disease Genes and Their Discovery. , 2013, , 87-97.		0
95	Complex Disease Genes and Their Discovery. , 2019, , 79-89.		0