
Jean-Marc Moulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/294651/publications.pdf Version: 2024-02-01

1

#	Article	IF	CITATIONS
1	The SOUL family of heme-binding proteins: Structure and function 15Âyears later. Coordination Chemistry Reviews, 2021, 448, 214189.	18.8	9
2	Low-level cadmium doses do not jeopardize the insulin secretion pathway of β-cell models until the onset of cell death. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126834.	3.0	3
3	Threshold in the toxicology of metals: Challenges and pitfalls of the concept. Current Opinion in Toxicology, 2020, 19, 28-33.	5.0	4
4	Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry. Biomolecules, 2020, 10, 1584.	4.0	13
5	Emerging Links between Cadmium Exposure and Insulin Resistance: Human, Animal, and Cell Study Data. Toxics, 2020, 8, 63.	3.7	43
6	Theoretical Modeling of Oral Glucose Tolerance Tests Guides the Interpretation of the Impact of Perinatal Cadmium Exposure on the Offspring's Glucose Homeostasis. Toxics, 2020, 8, 30.	3.7	5
7	Human mesenchymal stem cells improve rat islet functionality under cytokine stress with combined upregulation of heme oxygenase-1 and ferritin. Stem Cell Research and Therapy, 2019, 10, 85.	5.5	21
8	Impact of maternal low-level cadmium exposure on glucose and lipid metabolism of the litter at different ages after weaning. Chemosphere, 2019, 219, 109-121.	8.2	17
9	The iron regulatory proteins are defective in repressing translation <i>via</i> exogenous 5′ iron responsive elements despite their relative abundance in leukemic cellular models. Metallomics, 2018, 10, 639-649.	2.4	4
10	Iron and Oxidative Stress in Gestational Diabetes. , 2018, , 479-491.		0
11	Impact of chronic and low cadmium exposure of rats: sex specific disruption of glucose metabolism. Chemosphere, 2018, 207, 764-773.	8.2	27
12	Mitochondrial Morphology and Function of the Pancreatic β-Cells INS-1 Model upon Chronic Exposure to Sub-Lethal Cadmium Doses. Toxics, 2018, 6, 20.	3.7	15
13	Association between iron level, glucose impairment and increased DNA damage during pregnancy. Journal of Trace Elements in Medicine and Biology, 2017, 43, 52-57.	3.0	10
14	Chronic Exposure to Low-Level Cadmium in Diabetes: Role of Oxidative Stress and Comparison with Polychlorinated Biphenyls. Current Drug Targets, 2016, 17, 1385-1413.	2.1	21
15	Iron for proliferation of cell lines and hematopoietic progenitors: Nailing down the intracellular functional iron concentration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1596-1605.	4.1	30
16	The Bioinorganic Chemistry of Cadmium in the Context of Its Toxicity. Metal Ions in Life Sciences, 2013, 11, 1-29.	2.8	101
17	Cadmium Exposure, Cellular and Molecular Adaptations. , 2013, , 364-371.		0

18 Iron-Sulfur Cluster Proteins, Ferredoxins. , 2013, , 1044-1053.

JEAN-MARC MOULIS

#	Article	IF	CITATIONS
19	Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. BioMetals, 2010, 23, 877-896.	4.1	223
20	New perspectives in cadmium toxicity: an introduction. BioMetals, 2010, 23, 763-768.	4.1	107
21	Insight into the protein and solvent contributions to the reduction potentials of [4Fe–4S]2+/+ clusters: crystal structures of the Allochromatium vinosum ferredoxin variants C57A and V13G and the homologous Escherichia coli ferredoxin. Journal of Biological Inorganic Chemistry, 2009, 14, 783-799.	2.6	26
22	Insight into the reduction potentials ofAllochromatium vinosum-like ferredoxins. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s172-s172.	0.3	0
23	Zinc adaptation and resistance to cadmium toxicity in mammalian cells: Molecular insight by proteomic analysis. Proteomics, 2008, 8, 2244-2255.	2.2	13
24	A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import. Toxicology and Applied Pharmacology, 2008, 230, 312-319.	2.8	15
25	A role for lysosomes in the turnover of human iron regulatory protein 2. International Journal of Biochemistry and Cell Biology, 2008, 40, 2826-2832.	2.8	9
26	lron regulatory protein 1 is not an early target of cadmium toxicity in mice, but it is sensitive to cadmium stress in a human epithelial cell line. Biochemistry and Cell Biology, 2008, 86, 416-424.	2.0	5
27	Human iron regulatory protein 2 is easily cleaved in its specific domain: consequences for the haem binding properties of the protein. Biochemical Journal, 2007, 408, 429-439.	3.7	24
28	Folding and turnover of human iron regulatory protein 1 depend on its subcellular localization. FEBS Journal, 2007, 274, 1083-1092.	4.7	13
29	The structure of the 2[4Fe–4S] ferredoxin from Pseudomonas aeruginosa at 1.32-à resolution: comparison with other high-resolution structures of ferredoxins and contributing structural features to reduction potential values. Journal of Biological Inorganic Chemistry, 2006, 11, 445-458.	2.6	36
30	Crystal Structure of Human Iron Regulatory Protein 1 as Cytosolic Aconitase. Structure, 2006, 14, 129-139.	3.3	133
31	IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochemical Journal, 2005, 388, 143-150.	3.7	30
32	Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1. Journal of Inorganic Biochemistry, 2004, 98, 1413-1420.	3.5	47
33	Interactions between doxorubicin and the human iron regulatory system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1593, 209-218.	4.1	23
34	Peroxynitrite and Nitric Oxide Differently Target the Ironâ^'Sulfur Cluster and Amino Acid Residues of Human Iron Regulatory Protein 1â€. Biochemistry, 2003, 42, 7648-7654.	2.5	53
35	Structural Changes Associated with Switching Activities of Human Iron Regulatory Protein 1. Journal of Biological Chemistry, 2002, 277, 11995-12000.	3.4	29
36	Intramolecular electron transfer in [4Fe-4S] proteins: estimates of the reorganization energy and electronic coupling in Chromatium vinosum ferredoxin. Journal of Biological Inorganic Chemistry, 2001, 6, 446-451.	2.6	28

JEAN-MARC MOULIS

#	Article	IF	CITATIONS
37	Sulfide is an efficient iron releasing agent for mammalian ferritins. BBA - Proteins and Proteomics, 2001, 1547, 174-182.	2.1	27
38	Electron transfer properties of iron–sulfur proteins. Journal of Inorganic Biochemistry, 2000, 79, 83-91.	3.5	22
39	Human Cytoplasmic Aconitase (Iron Regulatory Protein 1) Is Converted into Its [3Fe-4S] Form by Hydrogen Peroxide in Vitro but Is Not Activated for Iron-responsive Element Binding. Journal of Biological Chemistry, 1999, 274, 21625-21630.	3.4	104
40	Information about the biologically relevant properties of Clostridium pasteurianum rubredoxin obtained from modeling and dynamics simulations of molecular variants. Theoretical Chemistry Accounts, 1999, 101, 223-227.	1.4	5
41	Unusual NMR, EPR, and Mössbauer Properties ofChromatium vinosum2[4Fe-4S] Ferredoxinâ€. Biochemistry, 1999, 38, 6335-6345.	2.5	25
42	The Two [4Fe-4S] Clusters in Chromatium vinosumFerredoxin Have Largely Different Reduction Potentials. Journal of Biological Chemistry, 1998, 273, 15404-15411.	3.4	42
43	Site-Directed Mutagenesis of Rubredoxin Reveals the Molecular Basis of Its Electron Transfer Properties. Biochemistry, 1997, 36, 15983-15991.	2.5	36
44	Intramolecular Electron Transfer between [4Fe-4S] Clusters Studied by Proton Magnetic Resonance Spectroscopy. Biochemistry, 1997, 36, 7839-7846.	2.5	29
45	Atomic Resolution (0.94 Ã) Structure of Clostridium acidurici Ferredoxin. Detailed Geometry of [4Fe-4S] Clusters in a Protein,. Biochemistry, 1997, 36, 16065-16073.	2.5	153
46	Use of1H Longitudinal Relaxation Times in the Solution Structure of Paramagnetic Proteins. Application to [4Fe-4S] Proteins. Biochemistry, 1996, 35, 12705-12711.	2.5	57
47	Molecular mechanism of pyruvate-ferredoxin oxidoreductases based on data obtained with theClostridium pasteurianumenzyme. FEBS Letters, 1996, 380, 287-290.	2.8	27
48	The influence of conserved aromatic residues on the electron transfer reactivity of 2[4Fe-4S] ferredoxins. BBA - Proteins and Proteomics, 1996, 1295, 201-208.	2.1	14
49	The coordination sphere of iron-sulfur clusters: lessons from site-directed mutagenesis experiments. Journal of Biological Inorganic Chemistry, 1996, 1, 2-14.	2.6	55
50	Nuclear-Magnetic-Resonance Determination of the Electron Self-Exchange Rate Constant of Clostridium pasteurianum Rubredoxin. FEBS Journal, 1996, 238, 346-349.	0.2	12
51	Crystal structure of the 2[4Feâ€4S] ferredoxin from <i>Chromatium vinosum</i> : Evolutionary and mechanistic inferences for [3/4Feâ€4S] ferredoxins. Protein Science, 1996, 5, 1765-1775.	7.6	72
52	Probing the Role of Electrostatic Forces in the Interaction of Clostridium pasteurianum Ferredoxin with Its Redox Partners. Biochemistry, 1995, 34, 16781-16788.	2.5	55
53	Detection and Classification of Hyperfine-Shifted 1H, 2H, and 15N Resonances from the Four Cysteines That Ligate Iron in Oxidized and Reduced Clostridium pasteurianum Rubredoxin. Journal of the American Chemical Society, 1995, 117, 5347-5350.	13.7	60
54	NMR of Chromatium vinosum ferredoxin: evidence for structural inequivalence and impeded electron transfer between the two [4Fe-4S] clusters. Biochemistry, 1995, 34, 194-205.	2.5	46

JEAN-MARC MOULIS

#	Article	IF	CITATIONS
55	On the role of conserved proline residues in the structure and function of Clostridium pasteurianum 2[4Fe–4S] ferredoxin. Protein Engineering, Design and Selection, 1994, 7, 681-687.	2.1	45
56	Refined crystal structure of the 2[4Fe-4S] ferredoxin from Clostridium acidurici at 1.84 Ã resolution. Journal of Molecular Biology, 1994, 243, 683-695.	4.2	74
57	Sequential assignments by1H 2D NMR of oxidized ferredoxins fromClostridium pasteurianum andClostridium acidurici. Magnetic Resonance in Chemistry, 1993, 31, S27-S33.	1.9	14
58	Preparation and intramolecular electron-transfer rate constant for the ruthenium-modified selenium-substituted [4Fe–4Se] high-potential protein from Chromatium vinosum and related studies. Journal of the Chemical Society Dalton Transactions, 1993, , 643-647.	1.1	4
59	Replacement Of Sulfur By Selenium In Iron—Sulfur Proteins. Advances in Inorganic Chemistry, 1992, 38, 73-115.	1.0	34
60	Design and functional expression in Escherichia coli of a synthetic gene encoding Clostridium pasteurianum 2[4Fe-4S] ferredoxin. Biochemical and Biophysical Research Communications, 1992, 185, 341-349.	2.1	22
61	Hydrogen-1 nuclear magnetic resonance of selenium-substituted clostridial ferredoxins. Inorganic Chemistry, 1987, 26, 320-324.	4.0	32
62	Resonance Raman spectroscopy of [2Feâ^'2X]2+ (X = S, Se) clusters in ferredoxins. BBA - Proteins and Proteomics, 1986, 873, 108-118.	2.1	22
63	High-yield chemical assembly of [2Fe-2X] (X = S, Se) clusters into spinach apoferredoxin: product characterization by resonance Raman spectroscopy. BBA - Proteins and Proteomics, 1986, 871, 243-249.	2.1	34
64	Structural differences between [2Fe-2S] clusters in spinach ferredoxin and in the "Red paramagnetic protein―from Clostridium pasteurianum. A resonance Raman study. Biochemical and Biophysical Research Communications, 1984, 119, 828-835.	2.1	30
65	Resonance Raman spectroscopy of Azotobacter vinelandii ferredoxin I. FEBS Letters, 1983, 163, 212-216.	2.8	12
66	An anionic six-coordinate high-spin iron(III) porphyrin. Polyhedron, 1982, 1, 737-738.	2.2	7
67	Replacement of sulfide by selenide in the [4Fe-4S] clusters of the ferredoxin fromClostridium pasteurianum. Biochemical and Biophysical Research Communications, 1981, 103, 667-673.	2.1	23